mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-06 13:18:12 +00:00
Harrison/faiss norm (#4903)
Co-authored-by: Jiaxin Shan <seedjeffwan@gmail.com>
This commit is contained in:
parent
9e2227ba11
commit
ba023d53ca
@ -81,6 +81,7 @@ class FAISS(VectorStore):
|
||||
relevance_score_fn: Optional[
|
||||
Callable[[float], float]
|
||||
] = _default_relevance_score_fn,
|
||||
normalize_L2: bool = False,
|
||||
):
|
||||
"""Initialize with necessary components."""
|
||||
self.embedding_function = embedding_function
|
||||
@ -88,6 +89,7 @@ class FAISS(VectorStore):
|
||||
self.docstore = docstore
|
||||
self.index_to_docstore_id = index_to_docstore_id
|
||||
self.relevance_score_fn = relevance_score_fn
|
||||
self._normalize_L2 = normalize_L2
|
||||
|
||||
def __add(
|
||||
self,
|
||||
@ -107,7 +109,11 @@ class FAISS(VectorStore):
|
||||
documents.append(Document(page_content=text, metadata=metadata))
|
||||
# Add to the index, the index_to_id mapping, and the docstore.
|
||||
starting_len = len(self.index_to_docstore_id)
|
||||
self.index.add(np.array(embeddings, dtype=np.float32))
|
||||
faiss = dependable_faiss_import()
|
||||
vector = np.array(embeddings, dtype=np.float32)
|
||||
if self._normalize_L2:
|
||||
faiss.normalize_L2(vector)
|
||||
self.index.add(vector)
|
||||
# Get list of index, id, and docs.
|
||||
full_info = [
|
||||
(starting_len + i, str(uuid.uuid4()), doc)
|
||||
@ -182,7 +188,11 @@ class FAISS(VectorStore):
|
||||
Returns:
|
||||
List of Documents most similar to the query and score for each
|
||||
"""
|
||||
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
|
||||
faiss = dependable_faiss_import()
|
||||
vector = np.array([embedding], dtype=np.float32)
|
||||
if self._normalize_L2:
|
||||
faiss.normalize_L2(vector)
|
||||
scores, indices = self.index.search(vector, k)
|
||||
docs = []
|
||||
for j, i in enumerate(indices[0]):
|
||||
if i == -1:
|
||||
@ -356,11 +366,15 @@ class FAISS(VectorStore):
|
||||
embeddings: List[List[float]],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
normalize_L2: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> FAISS:
|
||||
faiss = dependable_faiss_import()
|
||||
index = faiss.IndexFlatL2(len(embeddings[0]))
|
||||
index.add(np.array(embeddings, dtype=np.float32))
|
||||
vector = np.array(embeddings, dtype=np.float32)
|
||||
if normalize_L2:
|
||||
faiss.normalize_L2(vector)
|
||||
index.add(vector)
|
||||
documents = []
|
||||
for i, text in enumerate(texts):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
@ -369,7 +383,14 @@ class FAISS(VectorStore):
|
||||
docstore = InMemoryDocstore(
|
||||
{index_to_id[i]: doc for i, doc in enumerate(documents)}
|
||||
)
|
||||
return cls(embedding.embed_query, index, docstore, index_to_id, **kwargs)
|
||||
return cls(
|
||||
embedding.embed_query,
|
||||
index,
|
||||
docstore,
|
||||
index_to_id,
|
||||
normalize_L2=normalize_L2,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
|
Loading…
Reference in New Issue
Block a user