langchain[patch]: Revert breaking change until 0.2 release (#21256)

Reverts a minor breaking change until 0.2 release
This commit is contained in:
Eugene Yurtsev 2024-05-03 12:42:27 -04:00 committed by GitHub
parent 66a1e3f083
commit ba4a309d98
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 30 additions and 109 deletions

View File

@ -1,11 +1,18 @@
"""Toolkit for interacting with a vector store."""
from typing import List
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.llms.openai import OpenAI
from langchain_community.tools.vectorstore.tool import (
VectorStoreQATool,
VectorStoreQAWithSourcesTool,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import BaseTool, BaseToolkit
from langchain_core.vectorstores import VectorStore
from langchain.tools import BaseTool
class VectorStoreInfo(BaseModel):
"""Information about a VectorStore."""
@ -24,7 +31,7 @@ class VectorStoreToolkit(BaseToolkit):
"""Toolkit for interacting with a Vector Store."""
vectorstore_info: VectorStoreInfo = Field(exclude=True)
llm: BaseLanguageModel
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
@ -33,15 +40,6 @@ class VectorStoreToolkit(BaseToolkit):
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
try:
from langchain_community.tools.vectorstore.tool import (
VectorStoreQATool,
VectorStoreQAWithSourcesTool,
)
except ImportError:
raise ImportError(
"You need to install langchain-community to use this toolkit."
)
description = VectorStoreQATool.get_description(
self.vectorstore_info.name, self.vectorstore_info.description
)
@ -67,7 +65,7 @@ class VectorStoreRouterToolkit(BaseToolkit):
"""Toolkit for routing between Vector Stores."""
vectorstores: List[VectorStoreInfo] = Field(exclude=True)
llm: BaseLanguageModel
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
class Config:
"""Configuration for this pydantic object."""
@ -77,14 +75,6 @@ class VectorStoreRouterToolkit(BaseToolkit):
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
tools: List[BaseTool] = []
try:
from langchain_community.tools.vectorstore.tool import (
VectorStoreQATool,
)
except ImportError:
raise ImportError(
"You need to install langchain-community to use this toolkit."
)
for vectorstore_info in self.vectorstores:
description = VectorStoreQATool.get_description(
vectorstore_info.name, vectorstore_info.description

View File

@ -4,6 +4,7 @@ from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from langchain_community.llms.openai import OpenAI
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import Extra, root_validator
@ -67,11 +68,8 @@ class NatBotChain(Chain):
@classmethod
def from_default(cls, objective: str, **kwargs: Any) -> NatBotChain:
"""Load with default LLMChain."""
raise NotImplementedError(
"This method is no longer implemented. Please use from_llm."
"llm = OpenAI(temperature=0.5, best_of=10, n=3, max_tokens=50)"
"For example, NatBotChain.from_llm(llm, objective)"
)
llm = OpenAI(temperature=0.5, best_of=10, n=3, max_tokens=50)
return cls.from_llm(llm, objective, **kwargs)
@classmethod
def from_llm(

View File

@ -6,6 +6,8 @@ from collections import defaultdict
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import requests
from langchain_community.chat_models import ChatOpenAI
from langchain_community.utilities.openapi import OpenAPISpec
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
@ -19,7 +21,6 @@ from langchain.chains.sequential import SequentialChain
from langchain.tools import APIOperation
if TYPE_CHECKING:
from langchain_community.utilities.openapi import OpenAPISpec
from openapi_pydantic import Parameter
@ -255,13 +256,6 @@ def get_openapi_chain(
prompt: Main prompt template to use.
request_chain: Chain for taking the functions output and executing the request.
"""
try:
from langchain_community.utilities.openapi import OpenAPISpec
except ImportError as e:
raise ImportError(
"Could not import langchain_community.utilities.openapi. "
"Please install it with `pip install langchain-community`."
) from e
if isinstance(spec, str):
for conversion in (
OpenAPISpec.from_url,
@ -278,12 +272,9 @@ def get_openapi_chain(
if isinstance(spec, str):
raise ValueError(f"Unable to parse spec from source {spec}")
openai_fns, call_api_fn = openapi_spec_to_openai_fn(spec)
if not llm:
raise ValueError(
"Must provide an LLM for this chain.For example,\n"
"from langchain_openai import ChatOpenAI\n"
"llm = ChatOpenAI()\n"
)
llm = llm or ChatOpenAI(
model="gpt-3.5-turbo-0613",
)
prompt = prompt or ChatPromptTemplate.from_template(
"Use the provided API's to respond to this user query:\n\n{query}"
)

View File

@ -3,6 +3,7 @@ from __future__ import annotations
from typing import Any, Dict, List, Mapping, Optional
from langchain_community.chat_models import ChatOpenAI
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.retrievers import BaseRetriever
@ -41,8 +42,6 @@ class MultiRetrievalQAChain(MultiRouteChain):
default_retriever: Optional[BaseRetriever] = None,
default_prompt: Optional[PromptTemplate] = None,
default_chain: Optional[Chain] = None,
*,
default_chain_llm: Optional[BaseLanguageModel] = None,
**kwargs: Any,
) -> MultiRetrievalQAChain:
if default_prompt and not default_retriever:
@ -79,20 +78,8 @@ class MultiRetrievalQAChain(MultiRouteChain):
prompt = PromptTemplate(
template=prompt_template, input_variables=["history", "query"]
)
if default_chain_llm is None:
raise NotImplementedError(
"conversation_llm must be provided if default_chain is not "
"specified. This API has been changed to avoid instantiating "
"default LLMs on behalf of users."
"You can provide a conversation LLM like so:\n"
"from langchain_openai import ChatOpenAI\n"
"llm = ChatOpenAI()"
)
_default_chain = ConversationChain(
llm=default_chain_llm,
prompt=prompt,
input_key="query",
output_key="result",
llm=ChatOpenAI(), prompt=prompt, input_key="query", output_key="result"
)
return cls(
router_chain=router_chain,

View File

@ -1,6 +1,9 @@
from typing import Any, Dict, List, Optional, Type
from langchain_core.document_loaders import BaseLoader
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.llms.openai import OpenAI
from langchain_community.vectorstores.inmemory import InMemoryVectorStore
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.language_models import BaseLanguageModel
@ -35,14 +38,7 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -57,14 +53,7 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> str:
"""Query the vectorstore."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQA.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -79,14 +68,7 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -101,14 +83,7 @@ class VectorStoreIndexWrapper(BaseModel):
**kwargs: Any,
) -> dict:
"""Query the vectorstore and get back sources."""
if llm is None:
raise NotImplementedError(
"This API has been changed to require an LLM. "
"Please provide an llm to use for querying the vectorstore.\n"
"For example,\n"
"from langchain_openai import OpenAI\n"
"llm = OpenAI(temperature=0)"
)
llm = llm or OpenAI(temperature=0)
retriever_kwargs = retriever_kwargs or {}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
@ -116,31 +91,11 @@ class VectorStoreIndexWrapper(BaseModel):
return await chain.ainvoke({chain.question_key: question})
def _get_in_memory_vectorstore() -> Type[VectorStore]:
"""Get the InMemoryVectorStore."""
import warnings
try:
from langchain_community.vectorstores.inmemory import InMemoryVectorStore
except ImportError:
raise ImportError(
"Please install langchain-community to use the InMemoryVectorStore."
)
warnings.warn(
"Using InMemoryVectorStore as the default vectorstore."
"This memory store won't persist data. You should explicitly"
"specify a vectorstore when using VectorstoreIndexCreator"
)
return InMemoryVectorStore
class VectorstoreIndexCreator(BaseModel):
"""Logic for creating indexes."""
vectorstore_cls: Type[VectorStore] = Field(
default_factory=_get_in_memory_vectorstore
)
embedding: Embeddings
vectorstore_cls: Type[VectorStore] = InMemoryVectorStore
embedding: Embeddings = Field(default_factory=OpenAIEmbeddings)
text_splitter: TextSplitter = Field(default_factory=_get_default_text_splitter)
vectorstore_kwargs: dict = Field(default_factory=dict)