update docs (#7714)

This commit is contained in:
Bagatur 2023-07-14 11:49:09 -04:00 committed by GitHub
parent b065da6933
commit bae93682f6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -5,127 +5,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# LLM Symbolic Math \n", "# LLM Symbolic Math \n",
"This notebook showcases using LLMs and Python to Solve Algebraic Equations." "This notebook showcases using LLMs and Python to Solve Algebraic Equations. Under the hood is makes use of [SymPy](https://www.sympy.org/en/index.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating the limit of an equation"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What is the limit of sin(x) / x as x goes to 0?\u001b[32;1m\u001b[1;3mAnswer: 1\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 1'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm, verbose=True)\n",
"\n",
"llm_symbolic_math.run(\"What is the limit of sin(x) / x as x goes to 0?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating an integral"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What is the integral of e^-x from 0 to infinity?\u001b[32;1m\u001b[1;3mAnswer: 1\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 1'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What is the integral of e^-x from 0 to infinity?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating an algebraic equation"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What are the solutions to this equation x**2 - x?\u001b[32;1m\u001b[1;3mAnswer: 0 and 1.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 0 and 1.'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What are the solutions to this equation x**2 - x?\")"
] ]
}, },
{ {
@ -133,14 +13,136 @@
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Integrals and derivates"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: exp(x)*sin(x) + exp(x)*cos(x)'"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: exp(x)*sin(x)'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\n",
" \"What is the integral of exp(x)*sin(x) + exp(x)*cos(x) with respect to x?\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solve linear and differential equations"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: Eq(y(t), C2*exp(-t) + (C1 + t/2)*exp(t))'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run('Solve the differential equation y\" - y = e^t')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: {0, -sqrt(3)*I/3, sqrt(3)*I/3}'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What are the solutions to this equation y^3 + 1/3y?\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: (3 - sqrt(7), -sqrt(7) - 2, 1 - sqrt(7)), (sqrt(7) + 3, -2 + sqrt(7), 1 + sqrt(7))'"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
]
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3 (ipykernel)", "display_name": "venv",
"language": "python", "language": "python",
"name": "python3" "name": "venv"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
@ -152,7 +154,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.4" "version": "3.11.3"
} }
}, },
"nbformat": 4, "nbformat": 4,