update docs (#7714)

This commit is contained in:
Bagatur 2023-07-14 11:49:09 -04:00 committed by GitHub
parent b065da6933
commit bae93682f6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -5,127 +5,7 @@
"metadata": {},
"source": [
"# LLM Symbolic Math \n",
"This notebook showcases using LLMs and Python to Solve Algebraic Equations."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating the limit of an equation"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What is the limit of sin(x) / x as x goes to 0?\u001b[32;1m\u001b[1;3mAnswer: 1\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 1'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm, verbose=True)\n",
"\n",
"llm_symbolic_math.run(\"What is the limit of sin(x) / x as x goes to 0?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating an integral"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What is the integral of e^-x from 0 to infinity?\u001b[32;1m\u001b[1;3mAnswer: 1\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 1'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What is the integral of e^-x from 0 to infinity?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculating an algebraic equation"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMSymbolicMathChain chain...\u001b[0m\n",
"What are the solutions to this equation x**2 - x?\u001b[32;1m\u001b[1;3mAnswer: 0 and 1.\u001b[0m\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Answer: 0 and 1.'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What are the solutions to this equation x**2 - x?\")"
"This notebook showcases using LLMs and Python to Solve Algebraic Equations. Under the hood is makes use of [SymPy](https://www.sympy.org/en/index.html)."
]
},
{
@ -133,14 +13,136 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains.llm_symbolic_math.base import LLMSymbolicMathChain\n",
"\n",
"llm = OpenAI(temperature=0)\n",
"llm_symbolic_math = LLMSymbolicMathChain.from_llm(llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Integrals and derivates"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: exp(x)*sin(x) + exp(x)*cos(x)'"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What is the derivative of sin(x)*exp(x) with respect to x?\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: exp(x)*sin(x)'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\n",
" \"What is the integral of exp(x)*sin(x) + exp(x)*cos(x) with respect to x?\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solve linear and differential equations"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: Eq(y(t), C2*exp(-t) + (C1 + t/2)*exp(t))'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run('Solve the differential equation y\" - y = e^t')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: {0, -sqrt(3)*I/3, sqrt(3)*I/3}'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"What are the solutions to this equation y^3 + 1/3y?\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Answer: (3 - sqrt(7), -sqrt(7) - 2, 1 - sqrt(7)), (sqrt(7) + 3, -2 + sqrt(7), 1 + sqrt(7))'"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_symbolic_math.run(\"x = y + 5, y = z - 3, z = x * y. Solve for x, y, z\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "venv",
"language": "python",
"name": "python3"
"name": "venv"
},
"language_info": {
"codemirror_mode": {
@ -152,7 +154,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.3"
}
},
"nbformat": 4,