experimental[patch] Update prompt injection model (#13930)

- **Description:** Existing model used for Prompt Injection is quite
outdated but we fine-tuned and open-source a new model based on the same
model deberta-v3-base from Microsoft -
[laiyer/deberta-v3-base-prompt-injection](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection).
It supports more up-to-date injections and less prone to
false-positives.
  - **Dependencies:** No
  - **Tag maintainer:** -
  - **Twitter handle:** @alex_yaremchuk

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Oleksandr Yaremchuk
2023-11-27 23:56:53 +01:00
committed by GitHub
parent e6ebde9688
commit c0277d06e8
2 changed files with 50 additions and 15 deletions

View File

@@ -1,16 +1,18 @@
"""Tool for the identification of prompt injection attacks."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Any
from langchain.pydantic_v1 import Field
from langchain.pydantic_v1 import Field, root_validator
from langchain.tools.base import BaseTool
if TYPE_CHECKING:
from transformers import Pipeline
def _model_default_factory() -> Pipeline:
def _model_default_factory(
model_name: str = "deepset/deberta-v3-base-injection"
) -> Pipeline:
try:
from transformers import pipeline
except ImportError as e:
@@ -18,11 +20,11 @@ def _model_default_factory() -> Pipeline:
"Cannot import transformers, please install with "
"`pip install transformers`."
) from e
return pipeline("text-classification", model="deepset/deberta-v3-base-injection")
return pipeline("text-classification", model=model_name)
class HuggingFaceInjectionIdentifier(BaseTool):
"""Tool that uses deberta-v3-base-injection to detect prompt injection attacks."""
"""Tool that uses HF model to detect prompt injection attacks."""
name: str = "hugging_face_injection_identifier"
description: str = (
@@ -30,7 +32,19 @@ class HuggingFaceInjectionIdentifier(BaseTool):
"Useful for when you need to ensure that prompt is free of injection attacks. "
"Input should be any message from the user."
)
model: Pipeline = Field(default_factory=_model_default_factory)
model: Any = Field(default_factory=_model_default_factory)
"""Model to use for prompt injection detection.
Can be specified as transformers Pipeline or string. String should correspond to the
model name of a text-classification transformers model. Defaults to
``deepset/deberta-v3-base-injection`` model.
"""
@root_validator(pre=True)
def validate_environment(cls, values: dict) -> dict:
if isinstance(values.get("model"), str):
values["model"] = _model_default_factory(model_name=values["model"])
return values
def _run(self, query: str) -> str:
"""Use the tool."""