Merge branch 'master' into pprados/07-zeroxpdf

This commit is contained in:
Philippe PRADOS 2025-03-13 15:34:43 +01:00 committed by GitHub
commit c032aa7499
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
33 changed files with 3655 additions and 250 deletions

View File

@ -100,15 +100,32 @@ jobs:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
run: |
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
# Handle regular versions and pre-release versions differently
if [[ "$VERSION" == *"-"* ]]; then
# This is a pre-release version (contains a hyphen)
# Extract the base version without the pre-release suffix
BASE_VERSION=${VERSION%%-*}
# Look for the latest release of the same base version
REGEX="^$PKG_NAME==$BASE_VERSION\$"
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
# If no exact base version match, look for the latest release of any kind
if [ -z "$PREV_TAG" ]; then
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
PREV_TAG=$(git tag --sort=-creatordate | (grep -P "$REGEX" || true) | head -1)
fi
else
# Regular version handling
PREV_TAG="$PKG_NAME==${VERSION%.*}.$(( ${VERSION##*.} - 1 ))"; [[ "${VERSION##*.}" -eq 0 ]] && PREV_TAG=""
# backup case if releasing e.g. 0.3.0, looks up last release
# note if last release (chronologically) was e.g. 0.1.47 it will get
# that instead of the last 0.2 release
if [ -z "$PREV_TAG" ]; then
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
echo $REGEX
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
# backup case if releasing e.g. 0.3.0, looks up last release
# note if last release (chronologically) was e.g. 0.1.47 it will get
# that instead of the last 0.2 release
if [ -z "$PREV_TAG" ]; then
REGEX="^$PKG_NAME==\\d+\\.\\d+\\.\\d+\$"
echo $REGEX
PREV_TAG=$(git tag --sort=-creatordate | (grep -P $REGEX || true) | head -1)
fi
fi
# if PREV_TAG is empty, let it be empty
@ -312,12 +329,87 @@ jobs:
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
# Test select published packages against new core
test-prior-published-packages-against-new-core:
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
if: ${{ startsWith(inputs.working-directory, 'libs/core') }}
runs-on: ubuntu-latest
strategy:
matrix:
partner: [openai, anthropic]
fail-fast: false # Continue testing other partners if one fails
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AZURE_OPENAI_API_VERSION: ${{ secrets.AZURE_OPENAI_API_VERSION }}
AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }}
AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }}
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
steps:
- uses: actions/checkout@v4
- name: Set up Python + uv
uses: "./.github/actions/uv_setup"
with:
python-version: ${{ env.PYTHON_VERSION }}
- uses: actions/download-artifact@v4
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Test against ${{ matrix.partner }}
run: |
# Identify latest tag
LATEST_PACKAGE_TAG="$(
git ls-remote --tags origin "langchain-${{ matrix.partner }}*" \
| awk '{print $2}' \
| sed 's|refs/tags/||' \
| sort -Vr \
| head -n 1
)"
echo "Latest package tag: $LATEST_PACKAGE_TAG"
# Shallow-fetch just that single tag
git fetch --depth=1 origin tag "$LATEST_PACKAGE_TAG"
# Checkout the latest package files
rm -rf $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}/*
cd $GITHUB_WORKSPACE/libs/partners/${{ matrix.partner }}
git checkout "$LATEST_PACKAGE_TAG" -- .
# Print as a sanity check
echo "Version number from pyproject.toml: "
cat pyproject.toml | grep "version = "
# Run tests
uv sync --group test --group test_integration
uv pip install ../../core/dist/*.whl
make integration_tests
publish:
needs:
- build
- release-notes
- test-pypi-publish
- pre-release-checks
- test-prior-published-packages-against-new-core
if: >
always() &&
needs.build.result == 'success' &&
needs.release-notes.result == 'success' &&
needs.test-pypi-publish.result == 'success' &&
needs.pre-release-checks.result == 'success' && (
(startsWith(inputs.working-directory, 'libs/core') && needs.test-prior-published-packages-against-new-core.result == 'success')
|| (!startsWith(inputs.working-directory, 'libs/core'))
)
runs-on: ubuntu-latest
permissions:
# This permission is used for trusted publishing:

176
README.md
View File

@ -1,6 +1,12 @@
# 🦜️🔗 LangChain
<picture>
<source media="(prefers-color-scheme: light)" srcset="docs/static/img/logo-dark.svg">
<source media="(prefers-color-scheme: dark)" srcset="docs/static/img/logo-light.svg">
<img alt="LangChain Logo" src="docs/static/img/logo-dark.svg" width="80%">
</picture>
⚡ Build context-aware reasoning applications ⚡
<div>
<br>
</div>
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain?style=flat-square)](https://github.com/langchain-ai/langchain/releases)
[![CI](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
@ -12,131 +18,65 @@
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
> [!NOTE]
> Looking for the JS/TS library? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs).
To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com).
[LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications.
Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team.
## Quick Install
With pip:
LangChain is a framework for building LLM-powered applications. It helps you chain
together interoperable components and third-party integrations to simplify AI
application development — all while future-proofing decisions as the underlying
technology evolves.
```bash
pip install langchain
pip install -U langchain
```
With conda:
To learn more about LangChain, check out
[the docs](https://python.langchain.com/docs/introduction/). If youre looking for more
advanced customization or agent orchestration, check out
[LangGraph](https://langchain-ai.github.io/langgraph/), our framework for building
controllable agent workflows.
```bash
conda install langchain -c conda-forge
```
## Why use LangChain?
## 🤔 What is LangChain?
LangChain helps developers build applications powered by LLMs through a standard
interface for models, embeddings, vector stores, and more.
**LangChain** is a framework for developing applications powered by large language models (LLMs).
Use LangChain for:
- **Real-time data augmentation**. Easily connect LLMs to diverse data sources and
external / internal systems, drawing from LangChains vast library of integrations with
model providers, tools, vector stores, retrievers, and more.
- **Model interoperability**. Swap models in and out as your engineering team
experiments to find the best choice for your applications needs. As the industry
frontier evolves, adapt quickly — LangChains abstractions keep you moving without
losing momentum.
For these applications, LangChain simplifies the entire application lifecycle:
## LangChains ecosystem
While the LangChain framework can be used standalone, it also integrates seamlessly
with any LangChain product, giving developers a full suite of tools when building LLM
applications.
To improve your LLM application development, pair LangChain with:
- **Open-source libraries**: Build your applications using LangChain's open-source
[components](https://python.langchain.com/docs/concepts/) and
[third-party integrations](https://python.langchain.com/docs/integrations/providers/).
Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support.
- **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence.
- **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Platform](https://langchain-ai.github.io/langgraph/cloud/).
- [LangSmith](http://www.langchain.com/langsmith) - Helpful for agent evals and
observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain
visibility in production, and improve performance over time.
- [LangGraph](https://langchain-ai.github.io/langgraph/) - Build agents that can
reliably handle complex tasks with LangGraph, our low-level agent orchestration
framework. LangGraph offers customizable architecture, long-term memory, and
human-in-the-loop workflows — and is trusted in production by companies like LinkedIn,
Uber, Klarna, and GitLab.
- [LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform) - Deploy
and scale agents effortlessly with a purpose-built deployment platform for long
running, stateful workflows. Discover, reuse, configure, and share agents across
teams — and iterate quickly with visual prototyping in
[LangGraph Studio](https://langchain-ai.github.io/langgraph/concepts/langgraph_studio/).
### Open-source libraries
- **`langchain-core`**: Base abstractions.
- **Integration packages** (e.g. **`langchain-openai`**, **`langchain-anthropic`**, etc.): Important integrations have been split into lightweight packages that are co-maintained by the LangChain team and the integration developers.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **`langchain-community`**: Third-party integrations that are community maintained.
- **[LangGraph](https://langchain-ai.github.io/langgraph)**: LangGraph powers production-grade agents, trusted by Linkedin, Uber, Klarna, GitLab, and many more. Build robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph).
### Productionization:
- **[LangSmith](https://docs.smith.langchain.com/)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
### Deployment:
- **[LangGraph Platform](https://langchain-ai.github.io/langgraph/cloud/)**: Turn your LangGraph applications into production-ready APIs and Assistants.
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack_112024.svg#gh-light-mode-only "LangChain Architecture Overview")
![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](docs/static/svg/langchain_stack_112024_dark.svg#gh-dark-mode-only "LangChain Architecture Overview")
## 🧱 What can you build with LangChain?
**❓ Question answering with RAG**
- [Documentation](https://python.langchain.com/docs/tutorials/rag/)
- End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain)
**🧱 Extracting structured output**
- [Documentation](https://python.langchain.com/docs/tutorials/extraction/)
- End-to-end Example: [LangChain Extract](https://github.com/langchain-ai/langchain-extract/)
**🤖 Chatbots**
- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/)
- End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain)
And much more! Head to the [Tutorials](https://python.langchain.com/docs/tutorials/) section of the docs for more.
## 🚀 How does LangChain help?
The main value props of the LangChain libraries are:
1. **Components**: composable building blocks, tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not.
2. **Easy orchestration with LangGraph**: [LangGraph](https://langchain-ai.github.io/langgraph/),
built on top of `langchain-core`, has built-in support for [messages](https://python.langchain.com/docs/concepts/messages/), [tools](https://python.langchain.com/docs/concepts/tools/),
and other LangChain abstractions. This makes it easy to combine components into
production-ready applications with persistence, streaming, and other key features.
Check out the LangChain [tutorials page](https://python.langchain.com/docs/tutorials/#orchestration) for examples.
## Components
Components fall into the following **modules**:
**📃 Model I/O**
This includes [prompt management](https://python.langchain.com/docs/concepts/prompt_templates/)
and a generic interface for [chat models](https://python.langchain.com/docs/concepts/chat_models/), including a consistent interface for [tool-calling](https://python.langchain.com/docs/concepts/tool_calling/) and [structured output](https://python.langchain.com/docs/concepts/structured_outputs/) across model providers.
**📚 Retrieval**
Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/concepts/document_loaders/) from a variety of sources, [preparing it](https://python.langchain.com/docs/concepts/text_splitters/), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/docs/concepts/retrievers/) it for use in the generation step.
**🤖 Agents**
Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. [LangGraph](https://langchain-ai.github.io/langgraph/) makes it easy to use
LangChain components to build both [custom](https://langchain-ai.github.io/langgraph/tutorials/)
and [built-in](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/)
LLM agents.
## 📖 Documentation
Please see [here](https://python.langchain.com) for full documentation, which includes:
- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs.
- [Tutorials](https://python.langchain.com/docs/tutorials/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started.
- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task.
- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework.
- [API Reference](https://python.langchain.com/api_reference/): Thorough documentation of every class and method.
## 🌐 Ecosystem
- [🦜🛠️ LangSmith](https://docs.smith.langchain.com/): Trace and evaluate your language model applications and intelligent agents to help you move from prototype to production.
- [🦜🕸️ LangGraph](https://langchain-ai.github.io/langgraph/): Create stateful, multi-actor applications with LLMs. Integrates smoothly with LangChain, but can be used without it.
- [🦜🕸️ LangGraph Platform](https://langchain-ai.github.io/langgraph/concepts/#langgraph-platform): Deploy LLM applications built with LangGraph into production.
## 💁 Contributing
As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.
For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/).
## 🌟 Contributors
[![langchain contributors](https://contrib.rocks/image?repo=langchain-ai/langchain&max=2000)](https://github.com/langchain-ai/langchain/graphs/contributors)
## Additional resources
- [Tutorials](https://python.langchain.com/docs/tutorials/): Simple walkthroughs with
guided examples on getting started with LangChain.
- [How-to Guides](https://python.langchain.com/docs/how_to/): Quick, actionable code
snippets for topics such as tool calling, RAG use cases, and more.
- [Conceptual Guides](https://python.langchain.com/docs/concepts/): Explanations of key
concepts behind the LangChain framework.
- [API Reference](https://python.langchain.com/api_reference/): Detailed reference on
navigating base packages and integrations for LangChain.

View File

@ -30,7 +30,7 @@ At a high-level, the basic ways to generate examples are:
- User feedback: users (or labelers) leave feedback on interactions with the application and examples are generated based on that feedback (for example, all interactions with positive feedback could be turned into examples).
- LLM feedback: same as user feedback but the process is automated by having models evaluate themselves.
Which approach is best depends on your task. For tasks where a small number core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
Which approach is best depends on your task. For tasks where a small number of core principles need to be understood really well, it can be valuable hand-craft a few really good examples.
For tasks where the space of correct behaviors is broader and more nuanced, it can be useful to generate many examples in a more automated fashion so that there's a higher likelihood of there being some highly relevant examples for any runtime input.
**Single-turn v.s. multi-turn examples**
@ -39,8 +39,8 @@ Another dimension to think about when generating examples is what the example is
The simplest types of examples just have a user input and an expected model output. These are single-turn examples.
One more complex type if example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where its useful to show common errors and spell out exactly why they're wrong and what should be done instead.
One more complex type of example is where the example is an entire conversation, usually in which a model initially responds incorrectly and a user then tells the model how to correct its answer.
This is called a multi-turn example. Multi-turn examples can be useful for more nuanced tasks where it's useful to show common errors and spell out exactly why they're wrong and what should be done instead.
## 2. Number of examples
@ -77,7 +77,7 @@ If we insert our examples as messages, where each example is represented as a se
One area where formatting examples as messages can be tricky is when our example outputs have tool calls. This is because different models have different constraints on what types of message sequences are allowed when any tool calls are generated.
- Some models require that any AIMessage with tool calls be immediately followed by ToolMessages for every tool call,
- Some models additionally require that any ToolMessages be immediately followed by an AIMessage before the next HumanMessage,
- Some models require that tools are passed in to the model if there are any tool calls / ToolMessages in the chat history.
- Some models require that tools are passed into the model if there are any tool calls / ToolMessages in the chat history.
These requirements are model-specific and should be checked for the model you are using. If your model requires ToolMessages after tool calls and/or AIMessages after ToolMessages and your examples only include expected tool calls and not the actual tool outputs, you can try adding dummy ToolMessages / AIMessages to the end of each example with generic contents to satisfy the API constraints.
In these cases it's especially worth experimenting with inserting your examples as strings versus messages, as having dummy messages can adversely affect certain models.

View File

@ -91,7 +91,7 @@ For more information, please see:
#### Usage with LCEL
If you compose multiple Runnables using [LangChains Expression Language (LCEL)](/docs/concepts/lcel), the `stream()` and `astream()` methods will, by convention, stream the output of the last step in the chain. This allows the final processed result to be streamed incrementally. **LCEL** tries to optimize streaming latency in pipelines such that the streaming results from the last step are available as soon as possible.
If you compose multiple Runnables using [LangChains Expression Language (LCEL)](/docs/concepts/lcel), the `stream()` and `astream()` methods will, by convention, stream the output of the last step in the chain. This allows the final processed result to be streamed incrementally. **LCEL** tries to optimize streaming latency in pipelines so that the streaming results from the last step are available as soon as possible.
@ -104,7 +104,7 @@ Use the `astream_events` API to access custom data and intermediate outputs from
While this API is available for use with [LangGraph](/docs/concepts/architecture#langgraph) as well, it is usually not necessary when working with LangGraph, as the `stream` and `astream` methods provide comprehensive streaming capabilities for LangGraph graphs.
:::
For chains constructed using **LCEL**, the `.stream()` method only streams the output of the final step from te chain. This might be sufficient for some applications, but as you build more complex chains of several LLM calls together, you may want to use the intermediate values of the chain alongside the final output. For example, you may want to return sources alongside the final generation when building a chat-over-documents app.
For chains constructed using **LCEL**, the `.stream()` method only streams the output of the final step from the chain. This might be sufficient for some applications, but as you build more complex chains of several LLM calls together, you may want to use the intermediate values of the chain alongside the final output. For example, you may want to return sources alongside the final generation when building a chat-over-documents app.
There are ways to do this [using callbacks](/docs/concepts/callbacks), or by constructing your chain in such a way that it passes intermediate
values to the end with something like chained [`.assign()`](/docs/how_to/passthrough/) calls, but LangChain also includes an

View File

@ -38,6 +38,12 @@
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
":::note\n",
"\n",
"DeepSeek-R1, specified via `model=\"deepseek-reasoner\"`, does not support tool calling or structured output. Those features [are supported](https://api-docs.deepseek.com/guides/function_calling) by DeepSeek-V3 (specified via `model=\"deepseek-chat\"`).\n",
"\n",
":::\n",
"\n",
"## Setup\n",
"\n",
"To access DeepSeek models you'll need to create a/an DeepSeek account, get an API key, and install the `langchain-deepseek` integration package.\n",

View File

@ -322,7 +322,7 @@
"source": [
"### ``strict=True``\n",
"\n",
":::info Requires ``langchain-openai>=0.1.21rc1``\n",
":::info Requires ``langchain-openai>=0.1.21``\n",
"\n",
":::\n",
"\n",
@ -397,6 +397,405 @@
"For more on binding tools and tool call outputs, head to the [tool calling](/docs/how_to/function_calling) docs."
]
},
{
"cell_type": "markdown",
"id": "84833dd0-17e9-4269-82ed-550639d65751",
"metadata": {},
"source": [
"## Responses API\n",
"\n",
":::info Requires ``langchain-openai>=0.3.9-rc.1``\n",
"\n",
":::\n",
"\n",
"OpenAI supports a [Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions) API that is oriented toward building [agentic](/docs/concepts/agents/) applications. It includes a suite of [built-in tools](https://platform.openai.com/docs/guides/tools?api-mode=responses), including web and file search. It also supports management of [conversation state](https://platform.openai.com/docs/guides/conversation-state?api-mode=responses), allowing you to continue a conversational thread without explicitly passing in previous messages.\n",
"\n",
"`ChatOpenAI` will route to the Responses API if one of these features is used. You can also specify `use_responses_api=True` when instantiating `ChatOpenAI`.\n",
"\n",
"### Built-in tools\n",
"\n",
"Equipping `ChatOpenAI` with built-in tools will ground its responses with outside information, such as via context in files or the web. The [AIMessage](/docs/concepts/messages/#aimessage) generated from the model will include information about the built-in tool invocation.\n",
"\n",
"#### Web search\n",
"\n",
"To trigger a web search, pass `{\"type\": \"web_search_preview\"}` to the model as you would another tool.\n",
"\n",
":::tip\n",
"\n",
"You can also pass built-in tools as invocation params:\n",
"```python\n",
"llm.invoke(\"...\", tools=[{\"type\": \"web_search_preview\"}])\n",
"```\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0d8bfe89-948b-42d4-beac-85ef2a72491d",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4o-mini\")\n",
"\n",
"tool = {\"type\": \"web_search_preview\"}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"response = llm_with_tools.invoke(\"What was a positive news story from today?\")"
]
},
{
"cell_type": "markdown",
"id": "c9fe67c6-38ff-40a5-93b3-a4b7fca76372",
"metadata": {},
"source": [
"Note that the response includes structured [content blocks](/docs/concepts/messages/#content-1) that include both the text of the response and OpenAI [annotations](https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses#output-and-citations) citing its sources:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3ea5a4b1-f57a-4c8a-97f4-60ab8330a804",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'type': 'text',\n",
" 'text': 'Today, a heartwarming story emerged from Minnesota, where a group of high school robotics students built a custom motorized wheelchair for a 2-year-old boy named Cillian Jackson. Born with a genetic condition that limited his mobility, Cillian\\'s family couldn\\'t afford the $20,000 wheelchair he needed. The students at Farmington High School\\'s Rogue Robotics team took it upon themselves to modify a Power Wheels toy car into a functional motorized wheelchair for Cillian, complete with a joystick, safety bumpers, and a harness. One team member remarked, \"I think we won here more than we do in our competitions. Instead of completing a task, we\\'re helping change someone\\'s life.\" ([boredpanda.com](https://www.boredpanda.com/wholesome-global-positive-news/?utm_source=openai))\\n\\nThis act of kindness highlights the profound impact that community support and innovation can have on individuals facing challenges. ',\n",
" 'annotations': [{'end_index': 778,\n",
" 'start_index': 682,\n",
" 'title': '“Global Positive News”: 40 Posts To Remind Us Theres Good In The World',\n",
" 'type': 'url_citation',\n",
" 'url': 'https://www.boredpanda.com/wholesome-global-positive-news/?utm_source=openai'}]}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response.content"
]
},
{
"cell_type": "markdown",
"id": "95fbc34c-2f12-4d51-92c5-bf62a2f8900c",
"metadata": {},
"source": [
":::tip\n",
"\n",
"You can recover just the text content of the response as a string by using `response.text()`. For example, to stream response text:\n",
"\n",
"```python\n",
"for token in llm_with_tools.stream(\"...\"):\n",
" print(token.text(), end=\"|\")\n",
"```\n",
"\n",
"See the [streaming guide](/docs/how_to/chat_streaming/) for more detail.\n",
"\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "2a332940-d409-41ee-ac36-2e9bee900e83",
"metadata": {},
"source": [
"The output message will also contain information from any tool invocations:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a8011049-6c90-4fcb-82d4-850c72b46941",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'tool_outputs': [{'id': 'ws_67d192aeb6cc81918e736ad4a57937570d6f8507990d9d71',\n",
" 'status': 'completed',\n",
" 'type': 'web_search_call'}]}"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response.additional_kwargs"
]
},
{
"cell_type": "markdown",
"id": "288d47bb-3ccb-412f-a3d3-9f6cee0e6214",
"metadata": {},
"source": [
"#### File search\n",
"\n",
"To trigger a file search, pass a [file search tool](https://platform.openai.com/docs/guides/tools-file-search) to the model as you would another tool. You will need to populate an OpenAI-managed vector store and include the vector store ID in the tool definition. See [OpenAI documentation](https://platform.openai.com/docs/guides/tools-file-search) for more detail."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "1f758726-33ef-4c04-8a54-49adb783bbb3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Deep Research by OpenAI is a new capability integrated into ChatGPT that allows for the execution of multi-step research tasks independently. It can synthesize extensive amounts of online information and produce comprehensive reports similar to what a research analyst would do, significantly speeding up processes that would typically take hours for a human.\n",
"\n",
"### Key Features:\n",
"- **Independent Research**: Users simply provide a prompt, and the model can find, analyze, and synthesize information from hundreds of online sources.\n",
"- **Multi-Modal Capabilities**: The model is also able to browse user-uploaded files, plot graphs using Python, and embed visualizations in its outputs.\n",
"- **Training**: Deep Research has been trained using reinforcement learning on real-world tasks that require extensive browsing and reasoning.\n",
"\n",
"### Applications:\n",
"- Useful for professionals in sectors like finance, science, policy, and engineering, enabling them to obtain accurate and thorough research quickly.\n",
"- It can also be beneficial for consumers seeking personalized recommendations on complex purchases.\n",
"\n",
"### Limitations:\n",
"Although Deep Research presents significant advancements, it has some limitations, such as the potential to hallucinate facts or struggle with authoritative information. \n",
"\n",
"Deep Research aims to facilitate access to thorough and documented information, marking a significant step toward the broader goal of developing artificial general intelligence (AGI).\n"
]
}
],
"source": [
"llm = ChatOpenAI(model=\"gpt-4o-mini\")\n",
"\n",
"openai_vector_store_ids = [\n",
" \"vs_...\", # your IDs here\n",
"]\n",
"\n",
"tool = {\n",
" \"type\": \"file_search\",\n",
" \"vector_store_ids\": openai_vector_store_ids,\n",
"}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"response = llm_with_tools.invoke(\"What is deep research by OpenAI?\")\n",
"print(response.text())"
]
},
{
"cell_type": "markdown",
"id": "f88bbd71-83b0-45a6-9141-46ec9da93df6",
"metadata": {},
"source": [
"As with [web search](#web-search), the response will include content blocks with citations:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "865bc14e-1599-438e-be44-857891004979",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'file_id': 'file-3UzgX7jcC8Dt9ZAFzywg5k',\n",
" 'index': 346,\n",
" 'type': 'file_citation',\n",
" 'filename': 'deep_research_blog.pdf'},\n",
" {'file_id': 'file-3UzgX7jcC8Dt9ZAFzywg5k',\n",
" 'index': 575,\n",
" 'type': 'file_citation',\n",
" 'filename': 'deep_research_blog.pdf'}]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response.content[0][\"annotations\"][:2]"
]
},
{
"cell_type": "markdown",
"id": "dd00f6be-2862-4634-a0c3-14ee39915c90",
"metadata": {},
"source": [
"It will also include information from the built-in tool invocations:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "e16a7110-d2d8-45fa-b372-5109f330540b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'tool_outputs': [{'id': 'fs_67d196fbb83c8191ba20586175331687089228ce932eceb1',\n",
" 'queries': ['What is deep research by OpenAI?'],\n",
" 'status': 'completed',\n",
" 'type': 'file_search_call'}]}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response.additional_kwargs"
]
},
{
"cell_type": "markdown",
"id": "6fda05f0-4b81-4709-9407-f316d760ad50",
"metadata": {},
"source": [
"### Managing conversation state\n",
"\n",
"The Responses API supports management of [conversation state](https://platform.openai.com/docs/guides/conversation-state?api-mode=responses).\n",
"\n",
"#### Manually manage state\n",
"\n",
"You can manage the state manually or using [LangGraph](/docs/tutorials/chatbot/), as with other chat models:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "51d3e4d3-ea78-426c-9205-aecb0937fca7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"As of March 12, 2025, here are some positive news stories that highlight recent uplifting events:\n",
"\n",
"*... exemplify positive developments in health, environmental sustainability, and community well-being. \n"
]
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4o-mini\")\n",
"\n",
"tool = {\"type\": \"web_search_preview\"}\n",
"llm_with_tools = llm.bind_tools([tool])\n",
"\n",
"first_query = \"What was a positive news story from today?\"\n",
"messages = [{\"role\": \"user\", \"content\": first_query}]\n",
"\n",
"response = llm_with_tools.invoke(messages)\n",
"response_text = response.text()\n",
"print(f\"{response_text[:100]}... {response_text[-100:]}\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5da9d20f-9712-46f4-a395-5be5a7c1bc62",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your question was: \"What was a positive news story from today?\"\n",
"\n",
"The last sentence of my answer was: \"These stories exemplify positive developments in health, environmental sustainability, and community well-being.\"\n"
]
}
],
"source": [
"second_query = (\n",
" \"Repeat my question back to me, as well as the last sentence of your answer.\"\n",
")\n",
"\n",
"messages.extend(\n",
" [\n",
" response,\n",
" {\"role\": \"user\", \"content\": second_query},\n",
" ]\n",
")\n",
"second_response = llm_with_tools.invoke(messages)\n",
"print(second_response.text())"
]
},
{
"cell_type": "markdown",
"id": "5fd8ca21-8a5e-4294-af32-11f26a040171",
"metadata": {},
"source": [
":::tip\n",
"\n",
"You can use [LangGraph](https://langchain-ai.github.io/langgraph/) to manage conversational threads for you in a variety of backends, including in-memory and Postgres. See [this tutorial](/docs/tutorials/chatbot/) to get started.\n",
"\n",
":::\n",
"\n",
"\n",
"#### Passing `previous_response_id`\n",
"\n",
"When using the Responses API, LangChain messages will include an `\"id\"` field in its metadata. Passing this ID to subsequent invocations will continue the conversation. Note that this is [equivalent](https://platform.openai.com/docs/guides/conversation-state?api-mode=responses#openai-apis-for-conversation-state) to manually passing in messages from a billing perspective."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "009e541a-b372-410e-b9dd-608a8052ce09",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hi Bob! How can I assist you today?\n"
]
}
],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(\n",
" model=\"gpt-4o-mini\",\n",
" use_responses_api=True,\n",
")\n",
"response = llm.invoke(\"Hi, I'm Bob.\")\n",
"print(response.text())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "393a443a-4c5f-4a07-bc0e-c76e529b35e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Your name is Bob. How can I help you today, Bob?\n"
]
}
],
"source": [
"second_response = llm.invoke(\n",
" \"What is my name?\",\n",
" previous_response_id=response.response_metadata[\"id\"],\n",
")\n",
"print(second_response.text())"
]
},
{
"cell_type": "markdown",
"id": "57e27714",

View File

@ -0,0 +1,265 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "wkUAAcGZNSJ3"
},
"source": [
"# AgentQLLoader\n",
"\n",
"[AgentQL](https://www.agentql.com/)'s document loader provides structured data extraction from any web page using an [AgentQL query](https://docs.agentql.com/agentql-query). AgentQL can be used across multiple languages and web pages without breaking over time and change.\n",
"\n",
"## Overview\n",
"\n",
"`AgentQLLoader` requires the following two parameters:\n",
"- `url`: The URL of the web page you want to extract data from.\n",
"- `query`: The AgentQL query to execute. Learn more about [how to write an AgentQL query in the docs](https://docs.agentql.com/agentql-query) or test one out in the [AgentQL Playground](https://dev.agentql.com/playground).\n",
"\n",
"Setting the following parameters are optional:\n",
"- `api_key`: Your AgentQL API key from [dev.agentql.com](https://dev.agentql.com). **`Optional`.**\n",
"- `timeout`: The number of seconds to wait for a request before timing out. **Defaults to `900`.**\n",
"- `is_stealth_mode_enabled`: Whether to enable experimental anti-bot evasion strategies. This feature may not work for all websites at all times. Data extraction may take longer to complete with this mode enabled. **Defaults to `False`.**\n",
"- `wait_for`: The number of seconds to wait for the page to load before extracting data. **Defaults to `0`.**\n",
"- `is_scroll_to_bottom_enabled`: Whether to scroll to bottom of the page before extracting data. **Defaults to `False`.**\n",
"- `mode`: `\"standard\"` uses deep data analysis, while `\"fast\"` trades some depth of analysis for speed and is adequate for most usecases. [Learn more about the modes in this guide.](https://docs.agentql.com/accuracy/standard-mode) **Defaults to `\"fast\"`.**\n",
"- `is_screenshot_enabled`: Whether to take a screenshot before extracting data. Returned in 'metadata' as a Base64 string. **Defaults to `False`.**\n",
"\n",
"AgentQLLoader is implemented with AgentQL's [REST API](https://docs.agentql.com/rest-api/api-reference)\n",
"\n",
"### Integration details\n",
"\n",
"| Class | Package | Local | Serializable | JS support |\n",
"| :--- | :--- | :---: | :---: | :---: |\n",
"| AgentQLLoader| langchain-agentql | ✅ | ❌ | ❌ |\n",
"\n",
"### Loader features\n",
"| Source | Document Lazy Loading | Native Async Support\n",
"| :---: | :---: | :---: |\n",
"| AgentQLLoader | ✅ | ❌ |"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CaKa2QrnwPXq"
},
"source": [
"## Setup\n",
"\n",
"To use the AgentQL Document Loader, you will need to configure the `AGENTQL_API_KEY` environment variable, or use the `api_key` parameter. You can acquire an API key from our [Dev Portal](https://dev.agentql.com)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mZNJvUQBNSJ5"
},
"source": [
"### Installation\n",
"\n",
"Install **langchain-agentql**."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IblRoJJDNSJ5"
},
"outputs": [],
"source": [
"%pip install -qU langchain_agentql"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SNsUT60YvfCm"
},
"source": [
"### Set Credentials"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "2D1EN7Egvk1c"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"AGENTQL_API_KEY\"] = \"YOUR_AGENTQL_API_KEY\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "D4hnJV_6NSJ5"
},
"source": [
"## Initialization\n",
"\n",
"Next instantiate your model object:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "oMJdxL_KNSJ5"
},
"outputs": [],
"source": [
"from langchain_agentql.document_loaders import AgentQLLoader\n",
"\n",
"loader = AgentQLLoader(\n",
" url=\"https://www.agentql.com/blog\",\n",
" query=\"\"\"\n",
" {\n",
" posts[] {\n",
" title\n",
" url\n",
" date\n",
" author\n",
" }\n",
" }\n",
" \"\"\",\n",
" is_scroll_to_bottom_enabled=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SRxIOx90NSJ5"
},
"source": [
"## Load"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bNnnCZ1oNSJ5",
"outputId": "d0eb8cb4-9742-4f0c-80f1-0509a3af1808"
},
"outputs": [
{
"data": {
"text/plain": [
"Document(metadata={'request_id': 'bdb9dbe7-8a7f-427f-bc16-839ccc02cae6', 'generated_query': None, 'screenshot': None}, page_content=\"{'posts': [{'title': 'Launch Week Recap—make the web AI-ready', 'url': 'https://www.agentql.com/blog/2024-launch-week-recap', 'date': 'Nov 18, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Accurate data extraction from PDFs and images with AgentQL', 'url': 'https://www.agentql.com/blog/accurate-data-extraction-pdfs-images', 'date': 'Feb 1, 2025', 'author': 'Rachel-Lee Nabors'}, {'title': 'Introducing Scheduled Scraping Workflows', 'url': 'https://www.agentql.com/blog/scheduling', 'date': 'Dec 2, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Updates to Our Pricing Model', 'url': 'https://www.agentql.com/blog/2024-pricing-update', 'date': 'Nov 19, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Get data from any page: AgentQLs REST API Endpoint—Launch week day 5', 'url': 'https://www.agentql.com/blog/data-rest-api', 'date': 'Nov 15, 2024', 'author': 'Rachel-Lee Nabors'}]}\")"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"docs = loader.load()\n",
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wtPMNh72NSJ5",
"outputId": "59d529a4-3c22-445c-f5cf-dc7b24168906"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'request_id': 'bdb9dbe7-8a7f-427f-bc16-839ccc02cae6', 'generated_query': None, 'screenshot': None}\n"
]
}
],
"source": [
"print(docs[0].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7RMuEwl4NSJ5"
},
"source": [
"## Lazy Load\n",
"\n",
"`AgentQLLoader` currently only loads one `Document` at a time. Therefore, `load()` and `lazy_load()` behave the same:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FIYddZBONSJ5",
"outputId": "c39a7a6d-bc52-4ef9-b36f-e1d138590b79"
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(metadata={'request_id': '06273abd-b2ef-4e15-b0ec-901cba7b4825', 'generated_query': None, 'screenshot': None}, page_content=\"{'posts': [{'title': 'Launch Week Recap—make the web AI-ready', 'url': 'https://www.agentql.com/blog/2024-launch-week-recap', 'date': 'Nov 18, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Accurate data extraction from PDFs and images with AgentQL', 'url': 'https://www.agentql.com/blog/accurate-data-extraction-pdfs-images', 'date': 'Feb 1, 2025', 'author': 'Rachel-Lee Nabors'}, {'title': 'Introducing Scheduled Scraping Workflows', 'url': 'https://www.agentql.com/blog/scheduling', 'date': 'Dec 2, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Updates to Our Pricing Model', 'url': 'https://www.agentql.com/blog/2024-pricing-update', 'date': 'Nov 19, 2024', 'author': 'Rachel-Lee Nabors'}, {'title': 'Get data from any page: AgentQLs REST API Endpoint—Launch week day 5', 'url': 'https://www.agentql.com/blog/data-rest-api', 'date': 'Nov 15, 2024', 'author': 'Rachel-Lee Nabors'}]}\")]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pages = [doc for doc in loader.lazy_load()]\n",
"pages"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For more information on how to use this integration, please refer to the [git repo](https://github.com/tinyfish-io/agentql-integrations/tree/main/langchain) or the [langchain integration documentation](https://docs.agentql.com/integrations/langchain)"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,35 @@
# AgentQL
[AgentQL](https://www.agentql.com/) provides web interaction and structured data extraction from any web page using an [AgentQL query](https://docs.agentql.com/agentql-query) or a Natural Language prompt. AgentQL can be used across multiple languages and web pages without breaking over time and change.
## Installation and Setup
Install the integration package:
```bash
pip install langchain-agentql
```
## API Key
Get an API Key from our [Dev Portal](https://dev.agentql.com/) and add it to your environment variables:
```
export AGENTQL_API_KEY="your-api-key-here"
```
## DocumentLoader
AgentQL's document loader provides structured data extraction from any web page using an AgentQL query.
```python
from langchain_agentql.document_loaders import AgentQLLoader
```
See our [document loader documentation and usage example](/docs/integrations/document_loaders/agentql).
## Tools and Toolkits
AgentQL tools provides web interaction and structured data extraction from any web page using an AgentQL query or a Natural Language prompt.
```python
from langchain_agentql.tools import ExtractWebDataTool, ExtractWebDataBrowserTool, GetWebElementBrowserTool
from langchain_agentql import AgentQLBrowserToolkit
```
See our [tools documentation and usage example](/docs/integrations/tools/agentql).

File diff suppressed because it is too large Load Diff

View File

@ -147,6 +147,11 @@ WEBBROWSING_TOOL_FEAT_TABLE = {
"interactions": True,
"pricing": "40 free requests/day",
},
"AgentQL Toolkit": {
"link": "/docs/integrations/tools/agentql",
"interactions": True,
"pricing": "Free trial, with pay-as-you-go and flat rate plans after",
},
}
DATABASE_TOOL_FEAT_TABLE = {

View File

@ -819,6 +819,13 @@ const FEATURE_TABLES = {
source: "Platform for running and scaling headless browsers, can be used to scrape/crawl any site",
api: "API",
apiLink: "https://python.langchain.com/docs/integrations/document_loaders/hyperbrowser/"
},
{
name: "AgentQL",
link: "agentql",
source: "Web interaction and structured data extraction from any web page using an AgentQL query or a Natural Language prompt",
api: "API",
apiLink: "https://python.langchain.com/docs/integrations/document_loaders/agentql/"
}
]
},

25
docs/static/img/logo-dark.svg vendored Normal file
View File

@ -0,0 +1,25 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
<defs>
<style>
.cls-1 {
fill: #1c3c3c;
stroke-width: 0px;
}
</style>
</defs>
<g id="LanChain-logo">
<g id="LangChain-logotype">
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
</g>
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9c68.93,0,125,56.08,125,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 6.4 KiB

25
docs/static/img/logo-light.svg vendored Normal file
View File

@ -0,0 +1,25 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 1584.81 250">
<defs>
<style>
.cls-1 {
fill: #fff;
stroke-width: 0px;
}
</style>
</defs>
<g id="LanChain-logo">
<g id="LangChain-logotype">
<polygon class="cls-1" points="596.33 49.07 596.33 200.67 700.76 200.67 700.76 177.78 620.04 177.78 620.04 49.07 596.33 49.07"/>
<path class="cls-1" d="M1126.83,49.07c-20.53,0-37.95,7.4-50.38,21.41-12.32,13.88-18.82,33.36-18.82,56.33,0,47.23,27.25,77.75,69.41,77.75,29.71,0,52.71-15.54,61.54-41.56l2.14-6.31-23.53-8.94-2.17,7.03c-5.26,17.01-18.75,26.38-37.99,26.38-27.48,0-44.55-20.82-44.55-54.34s17.23-54.34,44.97-54.34c19.23,0,30.31,7.54,35.95,24.44l2.46,7.37,22.91-10.75-2.1-5.9c-8.96-25.22-29.65-38.56-59.85-38.56Z"/>
<path class="cls-1" d="M756.43,85.05c-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.52-.04,2.09-.04,2.09,0,0-17.76,2.88-25.08,4.43-31.23,6.6-44.31,18.52-44.31,38.02,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.99,0,11.81-.89,17.2-2.53,12.25-4.07,15.67-12.07,15.67-12.07v10.46h20.29v-74.78c0-25.42-16.7-40.6-44.67-40.6ZM777.46,164.85c0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23,3.75-3.13,10.38-5.37,20.62-7.6,8.42-1.83,19.54-3.85,19.54-3.85v15.48Z"/>
<path class="cls-1" d="M876.11,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96l.02-9.31h-22.74s0,112.19,0,112.19h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1539.12,85.04c-2.82,0-5.57.2-8.24.57-18.17,2.73-23.49,11.96-23.49,11.96v-9.32h-22.72v112.2h23.71v-62.18c0-21.13,15.41-30.75,29.73-30.75,15.48,0,23,8.32,23,25.45v67.48h23.71v-70.74c0-27.56-17.51-44.67-45.69-44.67Z"/>
<path class="cls-1" d="M1020.76,88.26v11.55s-5.81-14.77-32.24-14.77c-32.84,0-53.24,22.66-53.24,59.15,0,20.59,6.58,36.8,18.19,47.04,9.03,7.96,21.09,12.04,35.45,12.32,9.99.19,16.46-2.53,20.5-5.1,7.76-4.94,10.64-9.63,10.64-9.63,0,0-.33,3.67-.93,8.64-.43,3.6-1.24,6.13-1.24,6.13h0c-3.61,12.85-14.17,20.28-29.57,20.28s-24.73-5.07-26.58-15.06l-23.05,6.88c3.98,19.2,22,30.66,48.2,30.66,17.81,0,31.77-4.84,41.5-14.4,9.81-9.64,14.79-23.53,14.79-41.29v-102.41h-22.42ZM1019.26,145.21c0,22.44-10.96,35.84-29.32,35.84-19.67,0-30.95-13.44-30.95-36.86s11.28-36.66,30.95-36.66c17.92,0,29.15,13.34,29.32,34.82v2.86Z"/>
<path class="cls-1" d="M1259.01,85.04c-2.6,0-5.13.17-7.59.49-17.88,2.79-23.14,11.9-23.14,11.9v-2.67h-.01s0-45.69,0-45.69h-23.71v151.39h23.71v-62.18c0-21.27,15.41-30.95,29.73-30.95,15.48,0,23,8.32,23,25.45v67.68h23.71v-70.94c0-27.01-17.94-44.47-45.69-44.47Z"/>
<circle class="cls-1" cx="1450.93" cy="64.47" r="15.37"/>
<path class="cls-1" d="M1439.14,88.2v56.94h0c-6.75-5.56-14.6-9.75-23.5-12.26v-7.23c0-25.42-16.7-40.6-44.67-40.6-22.76,0-39.78,10.67-46.69,29.27-.44,1.19-1.77,4.78-1.77,4.78l19.51,12.62,2.65-6.91c4.52-11.78,12.88-17.27,26.3-17.27s21.1,6.51,20.96,19.33c0,.08,0,1.15,0,2.86-10.04-.28-19.38.69-27.77,2.66,0,0,0,0,0,0-11.06,2.5-31.6,8.85-38.94,25.36-.05.11-1.13,2.96-1.13,2.96-1.06,3.28-1.59,6.84-1.59,10.7,0,10.39,5.77,21.64,16.3,27.95,6.32,3.78,14.57,5.21,23.68,5.21,5.88,0,11.6-.86,16.91-2.44,12.49-4.04,15.96-12.16,15.96-12.16v10.47h20.29v-34.27c-5.7-3.56-14.26-5.66-23.65-5.64,0,2.65,0,4.33,0,4.33,0,7.86-8.56,18.93-28.5,18.93-5.63,0-9.62-1.49-12.28-3.71-3.56-2.97-4.73-7.24-4.24-11.01.21-1.64,1.2-5.17,4.87-8.23l-.04-.11c8.42-6.89,24.97-9.64,40.17-9.04v.03c12.94.47,22.62,3.01,29.53,7.77,1.88,1.19,3.65,2.52,5.28,3.98,6.94,6.23,9.73,13.9,10.93,18.38,1.95,7.31,1.43,18.57,1.43,18.57h23.59v-112.2h-23.59Z"/>
</g>
<path id="LangChain-symbol" class="cls-1" d="M393.52,75.2c9.66,9.66,9.66,25.38,0,35.04l-21.64,21.29-.22-1.22c-1.58-8.75-5.74-16.69-12.02-22.97-4.73-4.72-10.32-8.21-16.62-10.37-3.91,3.93-6.06,9.08-6.06,14.5,0,1.1.1,2.24.3,3.38,3.47,1.25,6.54,3.18,9.12,5.76,9.66,9.66,9.66,25.38,0,35.04l-18.84,18.84c-4.83,4.83-11.17,7.24-17.52,7.24s-12.69-2.41-17.52-7.24c-9.66-9.66-9.66-25.38,0-35.04l21.64-21.28.22,1.22c1.57,8.73,5.73,16.67,12.03,22.96,4.74,4.74,9.99,7.89,16.28,10.04l1.16-1.16c3.52-3.52,5.45-8.2,5.45-13.19,0-1.11-.1-2.22-.29-3.31-3.63-1.2-6.62-2.91-9.34-5.63-3.92-3.92-6.36-8.93-7.04-14.48-.05-.4-.08-.79-.12-1.19-.54-7.23,2.07-14.29,7.16-19.37l18.84-18.84c4.67-4.67,10.89-7.25,17.52-7.25s12.85,2.57,17.52,7.25ZM491.9,125c0,68.93-56.08,125-125,125H125C56.08,250,0,193.93,0,125S56.08,0,125,0h241.9C435.82,0,491.9,56.08,491.9,125ZM240.9,187.69c1.97-2.39-7.13-9.12-8.99-11.59-3.78-4.1-3.8-10-6.35-14.79-6.24-14.46-13.41-28.81-23.44-41.05-10.6-13.39-23.68-24.47-35.17-37.04-8.53-8.77-10.81-21.26-18.34-30.69-10.38-15.33-43.2-19.51-48.01,2.14.02.68-.19,1.11-.78,1.54-2.66,1.93-5.03,4.14-7.02,6.81-4.87,6.78-5.62,18.28.46,24.37.2-3.21.31-6.24,2.85-8.54,4.7,4.03,11.8,5.46,17.25,2.45,12.04,17.19,9.04,40.97,18.6,59.49,2.64,4.38,5.3,8.85,8.69,12.69,2.75,4.28,12.25,9.33,12.81,13.29.1,6.8-.7,14.23,3.76,19.92,2.1,4.26-3.06,8.54-7.22,8.01-5.4.74-11.99-3.63-16.72-.94-1.67,1.81-4.94-.19-6.38,2.32-.5,1.3-3.2,3.13-1.59,4.38,1.79-1.36,3.45-2.78,5.86-1.97-.36,1.96,1.19,2.24,2.42,2.81-.04,1.33-.82,2.69.2,3.82,1.19-1.2,1.9-2.9,3.79-3.4,6.28,8.37,12.67-8.47,26.26-.89-2.76-.14-5.21.21-7.07,2.48-.46.51-.85,1.11-.04,1.77,7.33-4.73,7.29,1.62,12.05-.33,3.66-1.91,7.3-4.3,11.65-3.62-4.23,1.22-4.4,4.62-6.88,7.49-.42.44-.62.94-.13,1.67,8.78-.74,9.5-3.66,16.59-7.24,5.29-3.23,10.56,4.6,15.14.14,1.01-.97,2.39-.64,3.64-.77-1.6-8.53-19.19,1.56-18.91-9.88,5.66-3.85,4.36-11.22,4.74-17.17,6.51,3.61,13.75,5.71,20.13,9.16,3.22,5.2,8.27,12.07,15,11.62.18-.52.34-.98.53-1.51,2.04.35,4.66,1.7,5.78-.88,3.05,3.19,7.53,3.03,11.52,2.21,2.95-2.4-5.55-5.82-6.69-8.29ZM419.51,92.72c0-11.64-4.52-22.57-12.73-30.78-8.21-8.21-19.14-12.73-30.79-12.73s-22.58,4.52-30.79,12.73l-18.84,18.84c-4.4,4.4-7.74,9.57-9.93,15.36l-.13.33-.34.1c-6.84,2.11-12.87,5.73-17.92,10.78l-18.84,18.84c-16.97,16.98-16.97,44.6,0,61.57,8.21,8.21,19.14,12.73,30.78,12.73h0c11.64,0,22.58-4.52,30.79-12.73l18.84-18.84c4.38-4.38,7.7-9.53,9.89-15.31l.13-.33.34-.11c6.72-2.06,12.92-5.8,17.95-10.82l18.84-18.84c8.21-8.21,12.73-19.14,12.73-30.79ZM172.38,173.6c-1.62,6.32-2.15,17.09-10.37,17.4-.68,3.65,2.53,5.02,5.44,3.85,2.89-1.33,4.26,1.05,5.23,3.42,4.46.65,11.06-1.49,11.31-6.77-6.66-3.84-8.72-11.14-11.62-17.9Z"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 6.4 KiB

View File

@ -783,8 +783,6 @@ class ChatTongyi(BaseChatModel):
]
if len(system_message_indices) == 1 and system_message_indices[0] != 0:
raise ValueError("System message can only be the first message.")
elif len(system_message_indices) > 1:
raise ValueError("There can be only one system message at most.")
params["messages"] = message_dicts

View File

@ -443,6 +443,11 @@ def add_ai_message_chunks(
else:
usage_metadata = None
id = None
for id_ in [left.id] + [o.id for o in others]:
if id_:
id = id_
break
return left.__class__(
example=left.example,
content=content,
@ -450,7 +455,7 @@ def add_ai_message_chunks(
tool_call_chunks=tool_call_chunks,
response_metadata=response_metadata,
usage_metadata=usage_metadata,
id=left.id,
id=id,
)

View File

@ -56,37 +56,50 @@ def draw_mermaid(
if with_styles
else "graph TD;\n"
)
# Group nodes by subgraph
subgraph_nodes: dict[str, dict[str, Node]] = {}
regular_nodes: dict[str, Node] = {}
if with_styles:
# Node formatting templates
default_class_label = "default"
format_dict = {default_class_label: "{0}({1})"}
if first_node is not None:
format_dict[first_node] = "{0}([{1}]):::first"
if last_node is not None:
format_dict[last_node] = "{0}([{1}]):::last"
for key, node in nodes.items():
if ":" in key:
# For nodes with colons, add them only to their deepest subgraph level
prefix = ":".join(key.split(":")[:-1])
subgraph_nodes.setdefault(prefix, {})[key] = node
else:
regular_nodes[key] = node
# Add nodes to the graph
for key, node in nodes.items():
node_name = node.name.split(":")[-1]
# Node formatting templates
default_class_label = "default"
format_dict = {default_class_label: "{0}({1})"}
if first_node is not None:
format_dict[first_node] = "{0}([{1}]):::first"
if last_node is not None:
format_dict[last_node] = "{0}([{1}]):::last"
def render_node(key: str, node: Node, indent: str = "\t") -> str:
"""Helper function to render a node with consistent formatting."""
node_name = node.name.split(":")[-1]
label = (
f"<p>{node_name}</p>"
if node_name.startswith(tuple(MARKDOWN_SPECIAL_CHARS))
and node_name.endswith(tuple(MARKDOWN_SPECIAL_CHARS))
else node_name
)
if node.metadata:
label = (
f"<p>{node_name}</p>"
if node_name.startswith(tuple(MARKDOWN_SPECIAL_CHARS))
and node_name.endswith(tuple(MARKDOWN_SPECIAL_CHARS))
else node_name
f"{label}<hr/><small><em>"
+ "\n".join(f"{k} = {value}" for k, value in node.metadata.items())
+ "</em></small>"
)
if node.metadata:
label = (
f"{label}<hr/><small><em>"
+ "\n".join(
f"{key} = {value}" for key, value in node.metadata.items()
)
+ "</em></small>"
)
node_label = format_dict.get(key, format_dict[default_class_label]).format(
_escape_node_label(key), label
)
mermaid_graph += f"\t{node_label}\n"
node_label = format_dict.get(key, format_dict[default_class_label]).format(
_escape_node_label(key), label
)
return f"{indent}{node_label}\n"
# Add non-subgraph nodes to the graph
if with_styles:
for key, node in regular_nodes.items():
mermaid_graph += render_node(key, node)
# Group edges by their common prefixes
edge_groups: dict[str, list[Edge]] = {}
@ -116,6 +129,11 @@ def draw_mermaid(
seen_subgraphs.add(subgraph)
mermaid_graph += f"\tsubgraph {subgraph}\n"
# Add nodes that belong to this subgraph
if with_styles and prefix in subgraph_nodes:
for key, node in subgraph_nodes[prefix].items():
mermaid_graph += render_node(key, node)
for edge in edges:
source, target = edge.source, edge.target
@ -156,11 +174,25 @@ def draw_mermaid(
# Start with the top-level edges (no common prefix)
add_subgraph(edge_groups.get("", []), "")
# Add remaining subgraphs
# Add remaining subgraphs with edges
for prefix in edge_groups:
if ":" in prefix or prefix == "":
continue
add_subgraph(edge_groups[prefix], prefix)
seen_subgraphs.add(prefix)
# Add empty subgraphs (subgraphs with no internal edges)
if with_styles:
for prefix in subgraph_nodes:
if ":" not in prefix and prefix not in seen_subgraphs:
mermaid_graph += f"\tsubgraph {prefix}\n"
# Add nodes that belong to this subgraph
for key, node in subgraph_nodes[prefix].items():
mermaid_graph += render_node(key, node)
mermaid_graph += "\tend\n"
seen_subgraphs.add(prefix)
# Add custom styles for nodes
if with_styles:

View File

@ -531,9 +531,19 @@ def convert_to_openai_tool(
'description' and 'parameters' keys are now optional. Only 'name' is
required and guaranteed to be part of the output.
.. versionchanged:: 0.3.44
Return OpenAI Responses API-style tools unchanged. This includes
any dict with "type" in "file_search", "function", "computer_use_preview",
"web_search_preview".
"""
if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
return tool
if isinstance(tool, dict):
if tool.get("type") in ("function", "file_search", "computer_use_preview"):
return tool
# As of 03.12.25 can be "web_search_preview" or "web_search_preview_2025_03_11"
if (tool.get("type") or "").startswith("web_search_preview"):
return tool
oai_function = convert_to_openai_function(tool, strict=strict)
return {"type": "function", "function": oai_function}

View File

@ -17,7 +17,7 @@ dependencies = [
"pydantic<3.0.0,>=2.7.4; python_full_version >= \"3.12.4\"",
]
name = "langchain-core"
version = "0.3.43"
version = "0.3.45-rc.1"
description = "Building applications with LLMs through composability"
readme = "README.md"

View File

@ -5,9 +5,6 @@
graph TD;
__start__([<p>__start__</p>]):::first
parent_1(parent_1)
child_child_1_grandchild_1(grandchild_1)
child_child_1_grandchild_2(grandchild_2<hr/><small><em>__interrupt = before</em></small>)
child_child_2(child_2)
parent_2(parent_2)
__end__([<p>__end__</p>]):::last
__start__ --> parent_1;
@ -15,8 +12,11 @@
parent_1 --> child_child_1_grandchild_1;
parent_2 --> __end__;
subgraph child
child_child_2(child_2)
child_child_1_grandchild_2 --> child_child_2;
subgraph child_1
child_child_1_grandchild_1(grandchild_1)
child_child_1_grandchild_2(grandchild_2<hr/><small><em>__interrupt = before</em></small>)
child_child_1_grandchild_1 --> child_child_1_grandchild_2;
end
end
@ -32,10 +32,6 @@
graph TD;
__start__([<p>__start__</p>]):::first
parent_1(parent_1)
child_child_1_grandchild_1(grandchild_1)
child_child_1_grandchild_1_greatgrandchild(greatgrandchild)
child_child_1_grandchild_2(grandchild_2<hr/><small><em>__interrupt = before</em></small>)
child_child_2(child_2)
parent_2(parent_2)
__end__([<p>__end__</p>]):::last
__start__ --> parent_1;
@ -43,10 +39,14 @@
parent_1 --> child_child_1_grandchild_1;
parent_2 --> __end__;
subgraph child
child_child_2(child_2)
child_child_1_grandchild_2 --> child_child_2;
subgraph child_1
child_child_1_grandchild_1(grandchild_1)
child_child_1_grandchild_2(grandchild_2<hr/><small><em>__interrupt = before</em></small>)
child_child_1_grandchild_1_greatgrandchild --> child_child_1_grandchild_2;
subgraph grandchild_1
child_child_1_grandchild_1_greatgrandchild(greatgrandchild)
child_child_1_grandchild_1 --> child_child_1_grandchild_1_greatgrandchild;
end
end
@ -1996,10 +1996,6 @@
graph TD;
__start__([<p>__start__</p>]):::first
outer_1(outer_1)
inner_1_inner_1(inner_1)
inner_1_inner_2(inner_2<hr/><small><em>__interrupt = before</em></small>)
inner_2_inner_1(inner_1)
inner_2_inner_2(inner_2)
outer_2(outer_2)
__end__([<p>__end__</p>]):::last
__start__ --> outer_1;
@ -2009,9 +2005,13 @@
outer_1 --> inner_2_inner_1;
outer_2 --> __end__;
subgraph inner_1
inner_1_inner_1(inner_1)
inner_1_inner_2(inner_2<hr/><small><em>__interrupt = before</em></small>)
inner_1_inner_1 --> inner_1_inner_2;
end
subgraph inner_2
inner_2_inner_1(inner_1)
inner_2_inner_2(inner_2)
inner_2_inner_1 --> inner_2_inner_2;
end
classDef default fill:#f2f0ff,line-height:1.2
@ -2020,6 +2020,23 @@
'''
# ---
# name: test_single_node_subgraph_mermaid[mermaid]
'''
%%{init: {'flowchart': {'curve': 'linear'}}}%%
graph TD;
__start__([<p>__start__</p>]):::first
__end__([<p>__end__</p>]):::last
__start__ --> sub_meow;
sub_meow --> __end__;
subgraph sub
sub_meow(meow)
end
classDef default fill:#f2f0ff,line-height:1.2
classDef first fill-opacity:0
classDef last fill:#bfb6fc
'''
# ---
# name: test_trim
dict({
'edges': list([

View File

@ -448,6 +448,23 @@ def test_triple_nested_subgraph_mermaid(snapshot: SnapshotAssertion) -> None:
assert graph.draw_mermaid() == snapshot(name="mermaid")
def test_single_node_subgraph_mermaid(snapshot: SnapshotAssertion) -> None:
empty_data = BaseModel
nodes = {
"__start__": Node(
id="__start__", name="__start__", data=empty_data, metadata=None
),
"sub:meow": Node(id="sub:meow", name="meow", data=empty_data, metadata=None),
"__end__": Node(id="__end__", name="__end__", data=empty_data, metadata=None),
}
edges = [
Edge(source="__start__", target="sub:meow", data=None, conditional=False),
Edge(source="sub:meow", target="__end__", data=None, conditional=False),
]
graph = Graph(nodes, edges)
assert graph.draw_mermaid() == snapshot(name="mermaid")
def test_runnable_get_graph_with_invalid_input_type() -> None:
"""Test that error isn't raised when getting graph with invalid input type."""

View File

@ -935,7 +935,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.43"
version = "0.3.44"
source = { editable = "." }
dependencies = [
{ name = "jsonpatch" },

View File

@ -133,6 +133,7 @@ def test_configurable() -> None:
"extra_body": None,
"include_response_headers": False,
"stream_usage": False,
"use_responses_api": None,
},
"kwargs": {
"tools": [

View File

@ -513,3 +513,6 @@ packages:
- name: langchain-opengradient
path: .
repo: OpenGradient/og-langchain
- name: langchain-agentql
path: langchain
repo: tinyfish-io/agentql-integrations

View File

@ -26,7 +26,7 @@ test = [
"pytest-asyncio<1.0.0,>=0.23.2",
"pytest-socket<1.0.0,>=0.7.0",
"pytest-watcher<1.0.0,>=0.3.4",
"langchain-tests<1.0.0,>=0.3.5",
"langchain-tests",
"langchain-openai",
"pytest-timeout<3.0.0,>=2.3.1",
]
@ -40,6 +40,7 @@ typing = ["mypy<2.0,>=1.10"]
[tool.uv.sources]
langchain-openai = { path = "../openai", editable = true }
langchain-core = { path = "../../core", editable = true }
langchain-tests = { path = "../../standard-tests", editable = true }
[tool.mypy]
disallow_untyped_defs = "True"

View File

@ -367,7 +367,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.35"
version = "0.3.43"
source = { editable = "../../core" }
dependencies = [
{ name = "jsonpatch" },
@ -399,7 +399,7 @@ dev = [
]
lint = [{ name = "ruff", specifier = ">=0.9.2,<1.0.0" }]
test = [
{ name = "blockbuster", specifier = "~=1.5.11" },
{ name = "blockbuster", specifier = "~=1.5.18" },
{ name = "freezegun", specifier = ">=1.2.2,<2.0.0" },
{ name = "grandalf", specifier = ">=0.8,<1.0" },
{ name = "langchain-tests", directory = "../../standard-tests" },
@ -464,7 +464,7 @@ dev = []
lint = [{ name = "ruff", specifier = ">=0.5,<1.0" }]
test = [
{ name = "langchain-openai", editable = "../openai" },
{ name = "langchain-tests", specifier = ">=0.3.5,<1.0.0" },
{ name = "langchain-tests", editable = "../../standard-tests" },
{ name = "pytest", specifier = ">=7.4.3,<8.0.0" },
{ name = "pytest-asyncio", specifier = ">=0.23.2,<1.0.0" },
{ name = "pytest-socket", specifier = ">=0.7.0,<1.0.0" },
@ -476,7 +476,7 @@ typing = [{ name = "mypy", specifier = ">=1.10,<2.0" }]
[[package]]
name = "langchain-openai"
version = "0.3.5"
version = "0.3.8"
source = { editable = "../openai" }
dependencies = [
{ name = "langchain-core" },
@ -524,8 +524,8 @@ typing = [
[[package]]
name = "langchain-tests"
version = "0.3.10"
source = { registry = "https://pypi.org/simple" }
version = "0.3.14"
source = { editable = "../../standard-tests" }
dependencies = [
{ name = "httpx" },
{ name = "langchain-core" },
@ -536,9 +536,26 @@ dependencies = [
{ name = "pytest-socket" },
{ name = "syrupy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/80/24/b1ef0d74222d04c4196e673e3ae8bac9f89481c17c4e6a72c67f61b403c7/langchain_tests-0.3.10.tar.gz", hash = "sha256:ba0ce038cb633e906961efc85591dd86b28d5c84a7880e7e0cd4dcb833d604a8", size = 31022 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d0/c3/2f2f2e919bbb9f8608389ac926c6cf8f717c3965956f0e5f139372742fb9/langchain_tests-0.3.10-py3-none-any.whl", hash = "sha256:393e15990b9d1d12b52ee832257e874beb4299891d98ec7682b7fba12c0f8fe1", size = 37521 },
[package.metadata]
requires-dist = [
{ name = "httpx", specifier = ">=0.25.0,<1" },
{ name = "langchain-core", editable = "../../core" },
{ name = "numpy", specifier = ">=1.26.2,<3" },
{ name = "pytest", specifier = ">=7,<9" },
{ name = "pytest-asyncio", specifier = ">=0.20,<1" },
{ name = "pytest-socket", specifier = ">=0.6.0,<1" },
{ name = "syrupy", specifier = ">=4,<5" },
]
[package.metadata.requires-dev]
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
lint = [{ name = "ruff", specifier = ">=0.9.2,<1.0.0" }]
test = [{ name = "langchain-core", editable = "../../core" }]
test-integration = []
typing = [
{ name = "langchain-core", editable = "../../core" },
{ name = "mypy", specifier = ">=1,<2" },
]
[[package]]

View File

@ -12,9 +12,11 @@ import sys
import warnings
from functools import partial
from io import BytesIO
from json import JSONDecodeError
from math import ceil
from operator import itemgetter
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Callable,
@ -89,6 +91,7 @@ from langchain_core.runnables import (
)
from langchain_core.runnables.config import run_in_executor
from langchain_core.tools import BaseTool
from langchain_core.tools.base import _stringify
from langchain_core.utils import get_pydantic_field_names
from langchain_core.utils.function_calling import (
convert_to_openai_function,
@ -104,12 +107,17 @@ from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from pydantic.v1 import BaseModel as BaseModelV1
from typing_extensions import Self
if TYPE_CHECKING:
from openai.types.responses import Response
logger = logging.getLogger(__name__)
# This SSL context is equivelent to the default `verify=True`.
# https://www.python-httpx.org/advanced/ssl/#configuring-client-instances
global_ssl_context = ssl.create_default_context(cafile=certifi.where())
_FUNCTION_CALL_IDS_MAP_KEY = "__openai_function_call_ids__"
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
"""Convert a dictionary to a LangChain message.
@ -528,6 +536,14 @@ class BaseChatOpenAI(BaseChatModel):
invocation.
"""
use_responses_api: Optional[bool] = None
"""Whether to use the Responses API instead of the Chat API.
If not specified then will be inferred based on invocation params.
.. versionadded:: 0.3.9
"""
model_config = ConfigDict(populate_by_name=True)
@model_validator(mode="before")
@ -654,7 +670,7 @@ class BaseChatOpenAI(BaseChatModel):
if output is None:
# Happens in streaming
continue
token_usage = output["token_usage"]
token_usage = output.get("token_usage")
if token_usage is not None:
for k, v in token_usage.items():
if v is None:
@ -725,6 +741,50 @@ class BaseChatOpenAI(BaseChatModel):
)
return generation_chunk
def _stream_responses(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
kwargs["stream"] = True
payload = self._get_request_payload(messages, stop=stop, **kwargs)
context_manager = self.root_client.responses.create(**payload)
with context_manager as response:
for chunk in response:
if generation_chunk := _convert_responses_chunk_to_generation_chunk(
chunk
):
if run_manager:
run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk
)
yield generation_chunk
async def _astream_responses(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
kwargs["stream"] = True
payload = self._get_request_payload(messages, stop=stop, **kwargs)
context_manager = await self.root_async_client.responses.create(**payload)
async with context_manager as response:
async for chunk in response:
if generation_chunk := _convert_responses_chunk_to_generation_chunk(
chunk
):
if run_manager:
await run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk
)
yield generation_chunk
def _stream(
self,
messages: List[BaseMessage],
@ -819,10 +879,19 @@ class BaseChatOpenAI(BaseChatModel):
raw_response = self.client.with_raw_response.create(**payload)
response = raw_response.parse()
generation_info = {"headers": dict(raw_response.headers)}
elif self._use_responses_api(payload):
response = self.root_client.responses.create(**payload)
return _construct_lc_result_from_responses_api(response)
else:
response = self.client.create(**payload)
return self._create_chat_result(response, generation_info)
def _use_responses_api(self, payload: dict) -> bool:
if isinstance(self.use_responses_api, bool):
return self.use_responses_api
else:
return _use_responses_api(payload)
def _get_request_payload(
self,
input_: LanguageModelInput,
@ -834,11 +903,12 @@ class BaseChatOpenAI(BaseChatModel):
if stop is not None:
kwargs["stop"] = stop
return {
"messages": [_convert_message_to_dict(m) for m in messages],
**self._default_params,
**kwargs,
}
payload = {**self._default_params, **kwargs}
if self._use_responses_api(payload):
payload = _construct_responses_api_payload(messages, payload)
else:
payload["messages"] = [_convert_message_to_dict(m) for m in messages]
return payload
def _create_chat_result(
self,
@ -877,6 +947,8 @@ class BaseChatOpenAI(BaseChatModel):
"model_name": response_dict.get("model", self.model_name),
"system_fingerprint": response_dict.get("system_fingerprint", ""),
}
if "id" in response_dict:
llm_output["id"] = response_dict["id"]
if isinstance(response, openai.BaseModel) and getattr(
response, "choices", None
@ -989,6 +1061,9 @@ class BaseChatOpenAI(BaseChatModel):
raw_response = await self.async_client.with_raw_response.create(**payload)
response = raw_response.parse()
generation_info = {"headers": dict(raw_response.headers)}
elif self._use_responses_api(payload):
response = await self.root_async_client.responses.create(**payload)
return _construct_lc_result_from_responses_api(response)
else:
response = await self.async_client.create(**payload)
return await run_in_executor(
@ -1258,33 +1333,38 @@ class BaseChatOpenAI(BaseChatModel):
formatted_tools = [
convert_to_openai_tool(tool, strict=strict) for tool in tools
]
tool_names = []
for tool in formatted_tools:
if "function" in tool:
tool_names.append(tool["function"]["name"])
elif "name" in tool:
tool_names.append(tool["name"])
else:
pass
if tool_choice:
if isinstance(tool_choice, str):
# tool_choice is a tool/function name
if tool_choice not in ("auto", "none", "any", "required"):
if tool_choice in tool_names:
tool_choice = {
"type": "function",
"function": {"name": tool_choice},
}
elif tool_choice in (
"file_search",
"web_search_preview",
"computer_use_preview",
):
tool_choice = {"type": tool_choice}
# 'any' is not natively supported by OpenAI API.
# We support 'any' since other models use this instead of 'required'.
if tool_choice == "any":
elif tool_choice == "any":
tool_choice = "required"
else:
pass
elif isinstance(tool_choice, bool):
tool_choice = "required"
elif isinstance(tool_choice, dict):
tool_names = [
formatted_tool["function"]["name"]
for formatted_tool in formatted_tools
]
if not any(
tool_name == tool_choice["function"]["name"]
for tool_name in tool_names
):
raise ValueError(
f"Tool choice {tool_choice} was specified, but the only "
f"provided tools were {tool_names}."
)
pass
else:
raise ValueError(
f"Unrecognized tool_choice type. Expected str, bool or dict. "
@ -1562,6 +1642,8 @@ class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
stream_options: Dict
Configure streaming outputs, like whether to return token usage when
streaming (``{"include_usage": True}``).
use_responses_api: Optional[bool]
Whether to use the responses API.
See full list of supported init args and their descriptions in the params section.
@ -1805,6 +1887,79 @@ class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
See ``ChatOpenAI.bind_tools()`` method for more.
.. dropdown:: Built-in tools
.. versionadded:: 0.3.9
You can access `built-in tools <https://platform.openai.com/docs/guides/tools?api-mode=responses>`_
supported by the OpenAI Responses API. See LangChain
`docs <https://python.langchain.com/docs/integrations/chat/openai/>`_ for more
detail.
.. code-block:: python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
tool = {"type": "web_search_preview"}
llm_with_tools = llm.bind_tools([tool])
response = llm_with_tools.invoke("What was a positive news story from today?")
response.content
.. code-block:: python
[
{
"type": "text",
"text": "Today, a heartwarming story emerged from ...",
"annotations": [
{
"end_index": 778,
"start_index": 682,
"title": "Title of story",
"type": "url_citation",
"url": "<url of story>",
}
],
}
]
.. dropdown:: Managing conversation state
.. versionadded:: 0.3.9
OpenAI's Responses API supports management of
`conversation state <https://platform.openai.com/docs/guides/conversation-state?api-mode=responses>`_.
Passing in response IDs from previous messages will continue a conversational
thread. See LangChain
`docs <https://python.langchain.com/docs/integrations/chat/openai/>`_ for more
detail.
.. code-block:: python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", use_responses_api=True)
response = llm.invoke("Hi, I'm Bob.")
response.text()
.. code-block:: python
"Hi Bob! How can I assist you today?"
.. code-block:: python
second_response = llm.invoke(
"What is my name?", previous_response_id=response.response_metadata["id"]
)
second_response.text()
.. code-block:: python
"Your name is Bob. How can I help you today, Bob?"
.. dropdown:: Structured output
.. code-block:: python
@ -2082,27 +2237,34 @@ class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
self, *args: Any, stream_usage: Optional[bool] = None, **kwargs: Any
) -> Iterator[ChatGenerationChunk]:
"""Set default stream_options."""
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
# Note: stream_options is not a valid parameter for Azure OpenAI.
# To support users proxying Azure through ChatOpenAI, here we only specify
# stream_options if include_usage is set to True.
# See https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new
# for release notes.
if stream_usage:
kwargs["stream_options"] = {"include_usage": stream_usage}
if self._use_responses_api(kwargs):
return super()._stream_responses(*args, **kwargs)
else:
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
# Note: stream_options is not a valid parameter for Azure OpenAI.
# To support users proxying Azure through ChatOpenAI, here we only specify
# stream_options if include_usage is set to True.
# See https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new
# for release notes.
if stream_usage:
kwargs["stream_options"] = {"include_usage": stream_usage}
return super()._stream(*args, **kwargs)
return super()._stream(*args, **kwargs)
async def _astream(
self, *args: Any, stream_usage: Optional[bool] = None, **kwargs: Any
) -> AsyncIterator[ChatGenerationChunk]:
"""Set default stream_options."""
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
if stream_usage:
kwargs["stream_options"] = {"include_usage": stream_usage}
if self._use_responses_api(kwargs):
async for chunk in super()._astream_responses(*args, **kwargs):
yield chunk
else:
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
if stream_usage:
kwargs["stream_options"] = {"include_usage": stream_usage}
async for chunk in super()._astream(*args, **kwargs):
yield chunk
async for chunk in super()._astream(*args, **kwargs):
yield chunk
def with_structured_output(
self,
@ -2617,3 +2779,355 @@ def _create_usage_metadata(oai_token_usage: dict) -> UsageMetadata:
**{k: v for k, v in output_token_details.items() if v is not None}
),
)
def _create_usage_metadata_responses(oai_token_usage: dict) -> UsageMetadata:
input_tokens = oai_token_usage.get("input_tokens", 0)
output_tokens = oai_token_usage.get("output_tokens", 0)
total_tokens = oai_token_usage.get("total_tokens", input_tokens + output_tokens)
output_token_details: dict = {
"audio": (oai_token_usage.get("completion_tokens_details") or {}).get(
"audio_tokens"
),
"reasoning": (oai_token_usage.get("output_token_details") or {}).get(
"reasoning_tokens"
),
}
return UsageMetadata(
input_tokens=input_tokens,
output_tokens=output_tokens,
total_tokens=total_tokens,
output_token_details=OutputTokenDetails(
**{k: v for k, v in output_token_details.items() if v is not None}
),
)
def _is_builtin_tool(tool: dict) -> bool:
return "type" in tool and tool["type"] != "function"
def _use_responses_api(payload: dict) -> bool:
uses_builtin_tools = "tools" in payload and any(
_is_builtin_tool(tool) for tool in payload["tools"]
)
responses_only_args = {"previous_response_id", "text", "truncation", "include"}
return bool(uses_builtin_tools or responses_only_args.intersection(payload))
def _construct_responses_api_payload(
messages: Sequence[BaseMessage], payload: dict
) -> dict:
payload["input"] = _construct_responses_api_input(messages)
if tools := payload.pop("tools", None):
new_tools: list = []
for tool in tools:
# chat api: {"type": "function", "function": {"name": "...", "description": "...", "parameters": {...}, "strict": ...}} # noqa: E501
# responses api: {"type": "function", "name": "...", "description": "...", "parameters": {...}, "strict": ...} # noqa: E501
if tool["type"] == "function" and "function" in tool:
new_tools.append({"type": "function", **tool["function"]})
else:
new_tools.append(tool)
payload["tools"] = new_tools
if tool_choice := payload.pop("tool_choice", None):
# chat api: {"type": "function", "function": {"name": "..."}}
# responses api: {"type": "function", "name": "..."}
if tool_choice["type"] == "function" and "function" in tool_choice:
payload["tool_choice"] = {"type": "function", **tool_choice["function"]}
else:
payload["tool_choice"] = tool_choice
if response_format := payload.pop("response_format", None):
if payload.get("text"):
text = payload["text"]
raise ValueError(
"Can specify at most one of 'response_format' or 'text', received both:"
f"\n{response_format=}\n{text=}"
)
# chat api: {"type": "json_schema, "json_schema": {"schema": {...}, "name": "...", "description": "...", "strict": ...}} # noqa: E501
# responses api: {"type": "json_schema, "schema": {...}, "name": "...", "description": "...", "strict": ...} # noqa: E501
if response_format["type"] == "json_schema":
payload["text"] = {"type": "json_schema", **response_format["json_schema"]}
else:
payload["text"] = response_format
return payload
def _construct_responses_api_input(messages: Sequence[BaseMessage]) -> list:
input_ = []
for lc_msg in messages:
msg = _convert_message_to_dict(lc_msg)
if msg["role"] == "tool":
tool_output = msg["content"]
if not isinstance(tool_output, str):
tool_output = _stringify(tool_output)
function_call_output = {
"type": "function_call_output",
"output": tool_output,
"call_id": msg["tool_call_id"],
}
input_.append(function_call_output)
elif msg["role"] == "assistant":
function_calls = []
if tool_calls := msg.pop("tool_calls", None):
# TODO: should you be able to preserve the function call object id on
# the langchain tool calls themselves?
if not lc_msg.additional_kwargs.get(_FUNCTION_CALL_IDS_MAP_KEY):
raise ValueError("")
function_call_ids = lc_msg.additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY]
for tool_call in tool_calls:
function_call = {
"type": "function_call",
"name": tool_call["function"]["name"],
"arguments": tool_call["function"]["arguments"],
"call_id": tool_call["id"],
"id": function_call_ids[tool_call["id"]],
}
function_calls.append(function_call)
msg["content"] = msg.get("content") or []
if lc_msg.additional_kwargs.get("refusal"):
if isinstance(msg["content"], str):
msg["content"] = [
{
"type": "output_text",
"text": msg["content"],
"annotations": [],
}
]
msg["content"] = msg["content"] + [
{"type": "refusal", "refusal": lc_msg.additional_kwargs["refusal"]}
]
if isinstance(msg["content"], list):
new_blocks = []
for block in msg["content"]:
# chat api: {"type": "text", "text": "..."}
# responses api: {"type": "output_text", "text": "...", "annotations": [...]} # noqa: E501
if block["type"] == "text":
new_blocks.append(
{
"type": "output_text",
"text": block["text"],
"annotations": block.get("annotations") or [],
}
)
elif block["type"] in ("output_text", "refusal"):
new_blocks.append(block)
else:
pass
msg["content"] = new_blocks
if msg["content"]:
input_.append(msg)
input_.extend(function_calls)
elif msg["role"] == "user":
if isinstance(msg["content"], list):
new_blocks = []
for block in msg["content"]:
# chat api: {"type": "text", "text": "..."}
# responses api: {"type": "input_text", "text": "..."}
if block["type"] == "text":
new_blocks.append({"type": "input_text", "text": block["text"]})
# chat api: {"type": "image_url", "image_url": {"url": "...", "detail": "..."}} # noqa: E501
# responses api: {"type": "image_url", "image_url": "...", "detail": "...", "file_id": "..."} # noqa: E501
elif block["type"] == "image_url":
new_block = {
"type": "input_image",
"image_url": block["image_url"]["url"],
}
if block["image_url"].get("detail"):
new_block["detail"] = block["image_url"]["detail"]
new_blocks.append(new_block)
elif block["type"] in ("input_text", "input_image", "input_file"):
new_blocks.append(block)
else:
pass
msg["content"] = new_blocks
input_.append(msg)
else:
input_.append(msg)
return input_
def _construct_lc_result_from_responses_api(response: Response) -> ChatResult:
"""Construct ChatResponse from OpenAI Response API response."""
if response.error:
raise ValueError(response.error)
response_metadata = {
k: v
for k, v in response.model_dump(exclude_none=True, mode="json").items()
if k
in (
"created_at",
"id",
"incomplete_details",
"metadata",
"object",
"status",
"user",
"model",
)
}
# for compatibility with chat completion calls.
response_metadata["model_name"] = response_metadata.get("model")
if response.usage:
usage_metadata = _create_usage_metadata_responses(response.usage.model_dump())
else:
usage_metadata = None
content_blocks: list = []
tool_calls = []
invalid_tool_calls = []
additional_kwargs: dict = {}
msg_id = None
for output in response.output:
if output.type == "message":
for content in output.content:
if content.type == "output_text":
block = {
"type": "text",
"text": content.text,
"annotations": [
annotation.model_dump()
for annotation in content.annotations
],
}
content_blocks.append(block)
if content.type == "refusal":
additional_kwargs["refusal"] = content.refusal
msg_id = output.id
elif output.type == "function_call":
try:
args = json.loads(output.arguments, strict=False)
error = None
except JSONDecodeError as e:
args = output.arguments
error = str(e)
if error is None:
tool_call = {
"type": "tool_call",
"name": output.name,
"args": args,
"id": output.call_id,
}
tool_calls.append(tool_call)
else:
tool_call = {
"type": "invalid_tool_call",
"name": output.name,
"args": args,
"id": output.call_id,
"error": error,
}
invalid_tool_calls.append(tool_call)
if _FUNCTION_CALL_IDS_MAP_KEY not in additional_kwargs:
additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY] = {}
additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY][output.call_id] = output.id
elif output.type == "reasoning":
additional_kwargs["reasoning"] = output.model_dump(
exclude_none=True, mode="json"
)
else:
tool_output = output.model_dump(exclude_none=True, mode="json")
if "tool_outputs" in additional_kwargs:
additional_kwargs["tool_outputs"].append(tool_output)
else:
additional_kwargs["tool_outputs"] = [tool_output]
message = AIMessage(
content=content_blocks,
id=msg_id,
usage_metadata=usage_metadata,
response_metadata=response_metadata,
additional_kwargs=additional_kwargs,
tool_calls=tool_calls,
invalid_tool_calls=invalid_tool_calls,
)
return ChatResult(generations=[ChatGeneration(message=message)])
def _convert_responses_chunk_to_generation_chunk(
chunk: Any,
) -> Optional[ChatGenerationChunk]:
content = []
tool_call_chunks: list = []
additional_kwargs: dict = {}
response_metadata = {}
usage_metadata = None
id = None
if chunk.type == "response.output_text.delta":
content.append(
{"type": "text", "text": chunk.delta, "index": chunk.content_index}
)
elif chunk.type == "response.output_text.annotation.added":
content.append(
{
"annotations": [
chunk.annotation.model_dump(exclude_none=True, mode="json")
],
"index": chunk.content_index,
}
)
elif chunk.type == "response.created":
response_metadata["id"] = chunk.response.id
elif chunk.type == "response.completed":
msg = cast(
AIMessage,
(
_construct_lc_result_from_responses_api(chunk.response)
.generations[0]
.message
),
)
usage_metadata = msg.usage_metadata
response_metadata = {
k: v for k, v in msg.response_metadata.items() if k != "id"
}
elif chunk.type == "response.output_item.added" and chunk.item.type == "message":
id = chunk.item.id
elif (
chunk.type == "response.output_item.added"
and chunk.item.type == "function_call"
):
tool_call_chunks.append(
{
"type": "tool_call_chunk",
"name": chunk.item.name,
"args": chunk.item.arguments,
"id": chunk.item.call_id,
"index": chunk.output_index,
}
)
additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY] = {
chunk.item.call_id: chunk.item.id
}
elif chunk.type == "response.output_item.done" and chunk.item.type in (
"web_search_call",
"file_search_call",
):
additional_kwargs["tool_outputs"] = [
chunk.item.model_dump(exclude_none=True, mode="json")
]
elif chunk.type == "response.function_call_arguments.delta":
tool_call_chunks.append(
{
"type": "tool_call_chunk",
"args": chunk.delta,
"index": chunk.output_index,
}
)
elif chunk.type == "response.refusal.done":
additional_kwargs["refusal"] = chunk.refusal
else:
return None
return ChatGenerationChunk(
message=AIMessageChunk(
content=content, # type: ignore[arg-type]
tool_call_chunks=tool_call_chunks,
usage_metadata=usage_metadata,
response_metadata=response_metadata,
additional_kwargs=additional_kwargs,
id=id,
)
)

View File

@ -7,12 +7,12 @@ authors = []
license = { text = "MIT" }
requires-python = "<4.0,>=3.9"
dependencies = [
"langchain-core<1.0.0,>=0.3.42",
"openai<2.0.0,>=1.58.1",
"langchain-core<1.0.0,>=0.3.45-rc.1",
"openai<2.0.0,>=1.66.0",
"tiktoken<1,>=0.7",
]
name = "langchain-openai"
version = "0.3.8"
version = "0.3.9-rc.1"
description = "An integration package connecting OpenAI and LangChain"
readme = "README.md"

View File

@ -0,0 +1,168 @@
"""Test Responses API usage."""
import os
from typing import Any, Optional, cast
import pytest
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
)
from langchain_openai import ChatOpenAI
def _check_response(response: Optional[BaseMessage]) -> None:
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
for block in response.content:
assert isinstance(block, dict)
if block["type"] == "text":
assert isinstance(block["text"], str)
for annotation in block["annotations"]:
if annotation["type"] == "file_citation":
assert all(
key in annotation
for key in ["file_id", "filename", "index", "type"]
)
elif annotation["type"] == "web_search":
assert all(
key in annotation
for key in ["end_index", "start_index", "title", "type", "url"]
)
text_content = response.text()
assert isinstance(text_content, str)
assert text_content
assert response.usage_metadata
assert response.usage_metadata["input_tokens"] > 0
assert response.usage_metadata["output_tokens"] > 0
assert response.usage_metadata["total_tokens"] > 0
assert response.response_metadata["model_name"]
for tool_output in response.additional_kwargs["tool_outputs"]:
assert tool_output["id"]
assert tool_output["status"]
assert tool_output["type"]
def test_web_search() -> None:
llm = ChatOpenAI(model="gpt-4o-mini")
first_response = llm.invoke(
"What was a positive news story from today?",
tools=[{"type": "web_search_preview"}],
)
_check_response(first_response)
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream(
"What was a positive news story from today?",
tools=[{"type": "web_search_preview"}],
):
assert isinstance(chunk, AIMessageChunk)
full = chunk if full is None else full + chunk
_check_response(full)
# Use OpenAI's stateful API
response = llm.invoke(
"what about a negative one",
tools=[{"type": "web_search_preview"}],
previous_response_id=first_response.response_metadata["id"],
)
_check_response(response)
# Manually pass in chat history
response = llm.invoke(
[
first_response,
{
"role": "user",
"content": [{"type": "text", "text": "what about a negative one"}],
},
],
tools=[{"type": "web_search_preview"}],
)
_check_response(response)
# Bind tool
response = llm.bind_tools([{"type": "web_search_preview"}]).invoke(
"What was a positive news story from today?"
)
_check_response(response)
async def test_web_search_async() -> None:
llm = ChatOpenAI(model="gpt-4o-mini")
response = await llm.ainvoke(
"What was a positive news story from today?",
tools=[{"type": "web_search_preview"}],
)
_check_response(response)
assert response.response_metadata["status"]
# Test streaming
full: Optional[BaseMessageChunk] = None
async for chunk in llm.astream(
"What was a positive news story from today?",
tools=[{"type": "web_search_preview"}],
):
assert isinstance(chunk, AIMessageChunk)
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
_check_response(full)
def test_function_calling() -> None:
def multiply(x: int, y: int) -> int:
"""return x * y"""
return x * y
llm = ChatOpenAI(model="gpt-4o-mini")
bound_llm = llm.bind_tools([multiply, {"type": "web_search_preview"}])
ai_msg = cast(AIMessage, bound_llm.invoke("whats 5 * 4"))
assert len(ai_msg.tool_calls) == 1
assert ai_msg.tool_calls[0]["name"] == "multiply"
assert set(ai_msg.tool_calls[0]["args"]) == {"x", "y"}
full: Any = None
for chunk in bound_llm.stream("whats 5 * 4"):
assert isinstance(chunk, AIMessageChunk)
full = chunk if full is None else full + chunk
assert len(full.tool_calls) == 1
assert full.tool_calls[0]["name"] == "multiply"
assert set(full.tool_calls[0]["args"]) == {"x", "y"}
response = bound_llm.invoke("whats some good news from today")
_check_response(response)
def test_stateful_api() -> None:
llm = ChatOpenAI(model="gpt-4o-mini", use_responses_api=True)
response = llm.invoke("how are you, my name is Bobo")
assert "id" in response.response_metadata
second_response = llm.invoke(
"what's my name", previous_response_id=response.response_metadata["id"]
)
assert isinstance(second_response.content, list)
assert "bobo" in second_response.content[0]["text"].lower() # type: ignore
def test_file_search() -> None:
pytest.skip() # TODO: set up infra
llm = ChatOpenAI(model="gpt-4o-mini")
tool = {
"type": "file_search",
"vector_store_ids": [os.environ["OPENAI_VECTOR_STORE_ID"]],
}
response = llm.invoke("What is deep research by OpenAI?", tools=[tool])
_check_response(response)
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream("What is deep research by OpenAI?", tools=[tool]):
assert isinstance(chunk, AIMessageChunk)
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
_check_response(full)

View File

@ -3,7 +3,7 @@
import json
from functools import partial
from types import TracebackType
from typing import Any, Dict, List, Literal, Optional, Type, Union
from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
@ -19,13 +19,30 @@ from langchain_core.messages import (
ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.outputs import ChatGeneration
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.runnables import RunnableLambda
from openai.types.responses import ResponseOutputMessage
from openai.types.responses.response import IncompleteDetails, Response, ResponseUsage
from openai.types.responses.response_error import ResponseError
from openai.types.responses.response_file_search_tool_call import (
ResponseFileSearchToolCall,
Result,
)
from openai.types.responses.response_function_tool_call import ResponseFunctionToolCall
from openai.types.responses.response_function_web_search import (
ResponseFunctionWebSearch,
)
from openai.types.responses.response_output_refusal import ResponseOutputRefusal
from openai.types.responses.response_output_text import ResponseOutputText
from openai.types.responses.response_usage import OutputTokensDetails
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langchain_openai import ChatOpenAI
from langchain_openai.chat_models.base import (
_FUNCTION_CALL_IDS_MAP_KEY,
_construct_lc_result_from_responses_api,
_construct_responses_api_input,
_convert_dict_to_message,
_convert_message_to_dict,
_convert_to_openai_response_format,
@ -862,7 +879,7 @@ def test_nested_structured_output_strict() -> None:
setup: str
punchline: str
self_evaluation: SelfEvaluation
_evaluation: SelfEvaluation
llm.with_structured_output(JokeWithEvaluation, method="json_schema")
@ -936,3 +953,731 @@ def test_structured_outputs_parser() -> None:
assert isinstance(deserialized, ChatGeneration)
result = output_parser.invoke(deserialized.message)
assert result == parsed_response
def test__construct_lc_result_from_responses_api_error_handling() -> None:
"""Test that errors in the response are properly raised."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
error=ResponseError(message="Test error", code="server_error"),
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[],
)
with pytest.raises(ValueError) as excinfo:
_construct_lc_result_from_responses_api(response)
assert "Test error" in str(excinfo.value)
def test__construct_lc_result_from_responses_api_basic_text_response() -> None:
"""Test a basic text response with no tools or special features."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputText(
type="output_text", text="Hello, world!", annotations=[]
)
],
role="assistant",
status="completed",
)
],
usage=ResponseUsage(
input_tokens=10,
output_tokens=3,
total_tokens=13,
output_tokens_details=OutputTokensDetails(reasoning_tokens=0),
),
)
result = _construct_lc_result_from_responses_api(response)
assert isinstance(result, ChatResult)
assert len(result.generations) == 1
assert isinstance(result.generations[0], ChatGeneration)
assert isinstance(result.generations[0].message, AIMessage)
assert result.generations[0].message.content == [
{"type": "text", "text": "Hello, world!", "annotations": []}
]
assert result.generations[0].message.id == "msg_123"
assert result.generations[0].message.usage_metadata
assert result.generations[0].message.usage_metadata["input_tokens"] == 10
assert result.generations[0].message.usage_metadata["output_tokens"] == 3
assert result.generations[0].message.usage_metadata["total_tokens"] == 13
assert result.generations[0].message.response_metadata["id"] == "resp_123"
assert result.generations[0].message.response_metadata["model_name"] == "gpt-4o"
def test__construct_lc_result_from_responses_api_multiple_text_blocks() -> None:
"""Test a response with multiple text blocks."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputText(
type="output_text", text="First part", annotations=[]
),
ResponseOutputText(
type="output_text", text="Second part", annotations=[]
),
],
role="assistant",
status="completed",
)
],
)
result = _construct_lc_result_from_responses_api(response)
assert len(result.generations[0].message.content) == 2
assert result.generations[0].message.content[0]["text"] == "First part" # type: ignore
assert result.generations[0].message.content[1]["text"] == "Second part" # type: ignore
def test__construct_lc_result_from_responses_api_refusal_response() -> None:
"""Test a response with a refusal."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputRefusal(
type="refusal", refusal="I cannot assist with that request."
)
],
role="assistant",
status="completed",
)
],
)
result = _construct_lc_result_from_responses_api(response)
assert result.generations[0].message.content == []
assert (
result.generations[0].message.additional_kwargs["refusal"]
== "I cannot assist with that request."
)
def test__construct_lc_result_from_responses_api_function_call_valid_json() -> None:
"""Test a response with a valid function call."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseFunctionToolCall(
type="function_call",
id="func_123",
call_id="call_123",
name="get_weather",
arguments='{"location": "New York", "unit": "celsius"}',
)
],
)
result = _construct_lc_result_from_responses_api(response)
msg: AIMessage = cast(AIMessage, result.generations[0].message)
assert len(msg.tool_calls) == 1
assert msg.tool_calls[0]["type"] == "tool_call"
assert msg.tool_calls[0]["name"] == "get_weather"
assert msg.tool_calls[0]["id"] == "call_123"
assert msg.tool_calls[0]["args"] == {"location": "New York", "unit": "celsius"}
assert _FUNCTION_CALL_IDS_MAP_KEY in result.generations[0].message.additional_kwargs
assert (
result.generations[0].message.additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY][
"call_123"
]
== "func_123"
)
def test__construct_lc_result_from_responses_api_function_call_invalid_json() -> None:
"""Test a response with an invalid JSON function call."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseFunctionToolCall(
type="function_call",
id="func_123",
call_id="call_123",
name="get_weather",
arguments='{"location": "New York", "unit": "celsius"',
# Missing closing brace
)
],
)
result = _construct_lc_result_from_responses_api(response)
msg: AIMessage = cast(AIMessage, result.generations[0].message)
assert len(msg.invalid_tool_calls) == 1
assert msg.invalid_tool_calls[0]["type"] == "invalid_tool_call"
assert msg.invalid_tool_calls[0]["name"] == "get_weather"
assert msg.invalid_tool_calls[0]["id"] == "call_123"
assert (
msg.invalid_tool_calls[0]["args"]
== '{"location": "New York", "unit": "celsius"'
)
assert "error" in msg.invalid_tool_calls[0]
assert _FUNCTION_CALL_IDS_MAP_KEY in result.generations[0].message.additional_kwargs
def test__construct_lc_result_from_responses_api_complex_response() -> None:
"""Test a complex response with multiple output types."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputText(
type="output_text",
text="Here's the information you requested:",
annotations=[],
)
],
role="assistant",
status="completed",
),
ResponseFunctionToolCall(
type="function_call",
id="func_123",
call_id="call_123",
name="get_weather",
arguments='{"location": "New York"}',
),
],
metadata=dict(key1="value1", key2="value2"),
incomplete_details=IncompleteDetails(reason="max_output_tokens"),
status="completed",
user="user_123",
)
result = _construct_lc_result_from_responses_api(response)
# Check message content
assert result.generations[0].message.content == [
{
"type": "text",
"text": "Here's the information you requested:",
"annotations": [],
}
]
# Check tool calls
msg: AIMessage = cast(AIMessage, result.generations[0].message)
assert len(msg.tool_calls) == 1
assert msg.tool_calls[0]["name"] == "get_weather"
# Check metadata
assert result.generations[0].message.response_metadata["id"] == "resp_123"
assert result.generations[0].message.response_metadata["metadata"] == {
"key1": "value1",
"key2": "value2",
}
assert result.generations[0].message.response_metadata["incomplete_details"] == {
"reason": "max_output_tokens"
}
assert result.generations[0].message.response_metadata["status"] == "completed"
assert result.generations[0].message.response_metadata["user"] == "user_123"
def test__construct_lc_result_from_responses_api_no_usage_metadata() -> None:
"""Test a response without usage metadata."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputText(
type="output_text", text="Hello, world!", annotations=[]
)
],
role="assistant",
status="completed",
)
],
# No usage field
)
result = _construct_lc_result_from_responses_api(response)
assert cast(AIMessage, result.generations[0].message).usage_metadata is None
def test__construct_lc_result_from_responses_api_web_search_response() -> None:
"""Test a response with web search output."""
from openai.types.responses.response_function_web_search import (
ResponseFunctionWebSearch,
)
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseFunctionWebSearch(
id="websearch_123", type="web_search_call", status="completed"
)
],
)
result = _construct_lc_result_from_responses_api(response)
assert "tool_outputs" in result.generations[0].message.additional_kwargs
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 1
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["type"]
== "web_search_call"
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["id"]
== "websearch_123"
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["status"]
== "completed"
)
def test__construct_lc_result_from_responses_api_file_search_response() -> None:
"""Test a response with file search output."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseFileSearchToolCall(
id="filesearch_123",
type="file_search_call",
status="completed",
queries=["python code", "langchain"],
results=[
Result(
file_id="file_123",
filename="example.py",
score=0.95,
text="def hello_world() -> None:\n print('Hello, world!')",
attributes={"language": "python", "size": 42},
)
],
)
],
)
result = _construct_lc_result_from_responses_api(response)
assert "tool_outputs" in result.generations[0].message.additional_kwargs
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 1
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["type"]
== "file_search_call"
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["id"]
== "filesearch_123"
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["status"]
== "completed"
)
assert result.generations[0].message.additional_kwargs["tool_outputs"][0][
"queries"
] == ["python code", "langchain"]
assert (
len(
result.generations[0].message.additional_kwargs["tool_outputs"][0][
"results"
]
)
== 1
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["results"][
0
]["file_id"]
== "file_123"
)
assert (
result.generations[0].message.additional_kwargs["tool_outputs"][0]["results"][
0
]["score"]
== 0.95
)
def test__construct_lc_result_from_responses_api_mixed_search_responses() -> None:
"""Test a response with both web search and file search outputs."""
response = Response(
id="resp_123",
created_at=1234567890,
model="gpt-4o",
object="response",
parallel_tool_calls=True,
tools=[],
tool_choice="auto",
output=[
ResponseOutputMessage(
type="message",
id="msg_123",
content=[
ResponseOutputText(
type="output_text", text="Here's what I found:", annotations=[]
)
],
role="assistant",
status="completed",
),
ResponseFunctionWebSearch(
id="websearch_123", type="web_search_call", status="completed"
),
ResponseFileSearchToolCall(
id="filesearch_123",
type="file_search_call",
status="completed",
queries=["python code"],
results=[
Result(
file_id="file_123",
filename="example.py",
score=0.95,
text="def hello_world() -> None:\n print('Hello, world!')",
)
],
),
],
)
result = _construct_lc_result_from_responses_api(response)
# Check message content
assert result.generations[0].message.content == [
{"type": "text", "text": "Here's what I found:", "annotations": []}
]
# Check tool outputs
assert "tool_outputs" in result.generations[0].message.additional_kwargs
assert len(result.generations[0].message.additional_kwargs["tool_outputs"]) == 2
# Check web search output
web_search = next(
output
for output in result.generations[0].message.additional_kwargs["tool_outputs"]
if output["type"] == "web_search_call"
)
assert web_search["id"] == "websearch_123"
assert web_search["status"] == "completed"
# Check file search output
file_search = next(
output
for output in result.generations[0].message.additional_kwargs["tool_outputs"]
if output["type"] == "file_search_call"
)
assert file_search["id"] == "filesearch_123"
assert file_search["queries"] == ["python code"]
assert file_search["results"][0]["filename"] == "example.py"
def test__construct_responses_api_input_human_message_with_text_blocks_conversion() -> (
None
):
"""Test that human messages with text blocks are properly converted."""
messages: list = [
HumanMessage(content=[{"type": "text", "text": "What's in this image?"}])
]
result = _construct_responses_api_input(messages)
assert len(result) == 1
assert result[0]["role"] == "user"
assert isinstance(result[0]["content"], list)
assert len(result[0]["content"]) == 1
assert result[0]["content"][0]["type"] == "input_text"
assert result[0]["content"][0]["text"] == "What's in this image?"
def test__construct_responses_api_input_human_message_with_image_url_conversion() -> (
None
):
"""Test that human messages with image_url blocks are properly converted."""
messages: list = [
HumanMessage(
content=[
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/image.jpg",
"detail": "high",
},
},
]
)
]
result = _construct_responses_api_input(messages)
assert len(result) == 1
assert result[0]["role"] == "user"
assert isinstance(result[0]["content"], list)
assert len(result[0]["content"]) == 2
# Check text block conversion
assert result[0]["content"][0]["type"] == "input_text"
assert result[0]["content"][0]["text"] == "What's in this image?"
# Check image block conversion
assert result[0]["content"][1]["type"] == "input_image"
assert result[0]["content"][1]["image_url"] == "https://example.com/image.jpg"
assert result[0]["content"][1]["detail"] == "high"
def test__construct_responses_api_input_ai_message_with_tool_calls() -> None:
"""Test that AI messages with tool calls are properly converted."""
tool_calls = [
{
"id": "call_123",
"name": "get_weather",
"args": {"location": "San Francisco"},
"type": "tool_call",
}
]
# Create a mapping from tool call IDs to function call IDs
function_call_ids = {"call_123": "func_456"}
ai_message = AIMessage(
content="",
tool_calls=tool_calls,
additional_kwargs={_FUNCTION_CALL_IDS_MAP_KEY: function_call_ids},
)
result = _construct_responses_api_input([ai_message])
assert len(result) == 1
assert result[0]["type"] == "function_call"
assert result[0]["name"] == "get_weather"
assert result[0]["arguments"] == '{"location": "San Francisco"}'
assert result[0]["call_id"] == "call_123"
assert result[0]["id"] == "func_456"
def test__construct_responses_api_input_ai_message_with_tool_calls_and_content() -> (
None
):
"""Test that AI messages with both tool calls and content are properly converted."""
tool_calls = [
{
"id": "call_123",
"name": "get_weather",
"args": {"location": "San Francisco"},
"type": "tool_call",
}
]
# Create a mapping from tool call IDs to function call IDs
function_call_ids = {"call_123": "func_456"}
ai_message = AIMessage(
content="I'll check the weather for you.",
tool_calls=tool_calls,
additional_kwargs={_FUNCTION_CALL_IDS_MAP_KEY: function_call_ids},
)
result = _construct_responses_api_input([ai_message])
assert len(result) == 2
# Check content
assert result[0]["role"] == "assistant"
assert result[0]["content"] == "I'll check the weather for you."
# Check function call
assert result[1]["type"] == "function_call"
assert result[1]["name"] == "get_weather"
assert result[1]["arguments"] == '{"location": "San Francisco"}'
assert result[1]["call_id"] == "call_123"
assert result[1]["id"] == "func_456"
def test__construct_responses_api_input_missing_function_call_ids() -> None:
"""Test AI messages with tool calls but missing function call IDs raise an error."""
tool_calls = [
{
"id": "call_123",
"name": "get_weather",
"args": {"location": "San Francisco"},
"type": "tool_call",
}
]
ai_message = AIMessage(content="", tool_calls=tool_calls)
with pytest.raises(ValueError):
_construct_responses_api_input([ai_message])
def test__construct_responses_api_input_tool_message_conversion() -> None:
"""Test that tool messages are properly converted to function_call_output."""
messages = [
ToolMessage(
content='{"temperature": 72, "conditions": "sunny"}',
tool_call_id="call_123",
)
]
result = _construct_responses_api_input(messages)
assert len(result) == 1
assert result[0]["type"] == "function_call_output"
assert result[0]["output"] == '{"temperature": 72, "conditions": "sunny"}'
assert result[0]["call_id"] == "call_123"
def test__construct_responses_api_input_multiple_message_types() -> None:
"""Test conversion of a conversation with multiple message types."""
messages = [
SystemMessage(content="You are a helpful assistant."),
HumanMessage(content="What's the weather in San Francisco?"),
HumanMessage(
content=[{"type": "text", "text": "What's the weather in San Francisco?"}]
),
AIMessage(
content="",
tool_calls=[
{
"type": "tool_call",
"id": "call_123",
"name": "get_weather",
"args": {"location": "San Francisco"},
}
],
additional_kwargs={_FUNCTION_CALL_IDS_MAP_KEY: {"call_123": "func_456"}},
),
ToolMessage(
content='{"temperature": 72, "conditions": "sunny"}',
tool_call_id="call_123",
),
AIMessage(content="The weather in San Francisco is 72°F and sunny."),
AIMessage(
content=[
{
"type": "text",
"text": "The weather in San Francisco is 72°F and sunny.",
}
]
),
]
messages_copy = [m.copy(deep=True) for m in messages]
result = _construct_responses_api_input(messages)
assert len(result) == len(messages)
# Check system message
assert result[0]["role"] == "system"
assert result[0]["content"] == "You are a helpful assistant."
# Check human message
assert result[1]["role"] == "user"
assert result[1]["content"] == "What's the weather in San Francisco?"
assert result[2]["role"] == "user"
assert result[2]["content"] == [
{"type": "input_text", "text": "What's the weather in San Francisco?"}
]
# Check function call
assert result[3]["type"] == "function_call"
assert result[3]["name"] == "get_weather"
assert result[3]["arguments"] == '{"location": "San Francisco"}'
assert result[3]["call_id"] == "call_123"
assert result[3]["id"] == "func_456"
# Check function call output
assert result[4]["type"] == "function_call_output"
assert result[4]["output"] == '{"temperature": 72, "conditions": "sunny"}'
assert result[4]["call_id"] == "call_123"
assert result[5]["role"] == "assistant"
assert result[5]["content"] == "The weather in San Francisco is 72°F and sunny."
assert result[6]["role"] == "assistant"
assert result[6]["content"] == [
{
"type": "output_text",
"text": "The weather in San Francisco is 72°F and sunny.",
"annotations": [],
}
]
# assert no mutation has occurred
assert messages_copy == messages

View File

@ -462,7 +462,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.42"
version = "0.3.45rc1"
source = { editable = "../../core" }
dependencies = [
{ name = "jsonpatch" },
@ -520,7 +520,7 @@ typing = [
[[package]]
name = "langchain-openai"
version = "0.3.8"
version = "0.3.9rc1"
source = { editable = "." }
dependencies = [
{ name = "langchain-core" },
@ -566,7 +566,7 @@ typing = [
[package.metadata]
requires-dist = [
{ name = "langchain-core", editable = "../../core" },
{ name = "openai", specifier = ">=1.58.1,<2.0.0" },
{ name = "openai", specifier = ">=1.66.0,<2.0.0" },
{ name = "tiktoken", specifier = ">=0.7,<1" },
]
@ -603,7 +603,7 @@ typing = [
[[package]]
name = "langchain-tests"
version = "0.3.13"
version = "0.3.14"
source = { editable = "../../standard-tests" }
dependencies = [
{ name = "httpx" },
@ -751,7 +751,7 @@ wheels = [
[[package]]
name = "openai"
version = "1.61.1"
version = "1.66.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@ -763,9 +763,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/d9/cf/61e71ce64cf0a38f029da0f9a5f10c9fa0e69a7a977b537126dac50adfea/openai-1.61.1.tar.gz", hash = "sha256:ce1851507218209961f89f3520e06726c0aa7d0512386f0f977e3ac3e4f2472e", size = 350784 }
sdist = { url = "https://files.pythonhosted.org/packages/84/c5/3c422ca3ccc81c063955e7c20739d7f8f37fea0af865c4a60c81e6225e14/openai-1.66.0.tar.gz", hash = "sha256:8a9e672bc6eadec60a962f0b40d7d1c09050010179c919ed65322e433e2d1025", size = 396819 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9a/b6/2e2a011b2dc27a6711376808b4cd8c922c476ea0f1420b39892117fa8563/openai-1.61.1-py3-none-any.whl", hash = "sha256:72b0826240ce26026ac2cd17951691f046e5be82ad122d20a8e1b30ca18bd11e", size = 463126 },
{ url = "https://files.pythonhosted.org/packages/d7/f1/d52960dac9519c9de64593460826a0fe2e19159389ec97ecf3e931d2e6a3/openai-1.66.0-py3-none-any.whl", hash = "sha256:43e4a3c0c066cc5809be4e6aac456a3ebc4ec1848226ef9d1340859ac130d45a", size = 566389 },
]
[[package]]

View File

@ -7,7 +7,7 @@ authors = [{ name = "Erick Friis", email = "erick@langchain.dev" }]
license = { text = "MIT" }
requires-python = "<4.0,>=3.9"
dependencies = [
"langchain-core<1.0.0,>=0.3.42",
"langchain-core<1.0.0,>=0.3.43",
"pytest<9,>=7",
"pytest-asyncio<1,>=0.20",
"httpx<1,>=0.25.0",

View File

@ -288,7 +288,7 @@ wheels = [
[[package]]
name = "langchain-core"
version = "0.3.42"
version = "0.3.43"
source = { editable = "../core" }
dependencies = [
{ name = "jsonpatch" },

25
uv.lock
View File

@ -1,4 +1,5 @@
version = 1
revision = 1
requires-python = ">=3.9, <4.0"
resolution-markers = [
"python_full_version >= '3.13' and platform_python_implementation == 'PyPy'",
@ -2152,7 +2153,7 @@ wheels = [
[[package]]
name = "langchain"
version = "0.3.19"
version = "0.3.20"
source = { editable = "libs/langchain" }
dependencies = [
{ name = "async-timeout", marker = "python_full_version < '3.11'" },
@ -2191,6 +2192,7 @@ requires-dist = [
{ name = "requests", specifier = ">=2,<3" },
{ name = "sqlalchemy", specifier = ">=1.4,<3" },
]
provides-extras = ["community", "anthropic", "openai", "cohere", "google-vertexai", "google-genai", "fireworks", "ollama", "together", "mistralai", "huggingface", "groq", "aws", "deepseek", "xai"]
[package.metadata.requires-dev]
codespell = [{ name = "codespell", specifier = ">=2.2.0,<3.0.0" }]
@ -2259,7 +2261,7 @@ typing = [
[[package]]
name = "langchain-anthropic"
version = "0.3.8"
version = "0.3.9"
source = { editable = "libs/partners/anthropic" }
dependencies = [
{ name = "anthropic" },
@ -2360,7 +2362,7 @@ typing = [
[[package]]
name = "langchain-community"
version = "0.3.18"
version = "0.3.19"
source = { editable = "libs/community" }
dependencies = [
{ name = "aiohttp" },
@ -2385,8 +2387,7 @@ requires-dist = [
{ name = "langchain", editable = "libs/langchain" },
{ name = "langchain-core", editable = "libs/core" },
{ name = "langsmith", specifier = ">=0.1.125,<0.4" },
{ name = "numpy", marker = "python_full_version < '3.12'", specifier = ">=1.26.4,<2" },
{ name = "numpy", marker = "python_full_version >= '3.12'", specifier = ">=1.26.2,<3" },
{ name = "numpy", specifier = ">=1.26.2,<3" },
{ name = "pydantic-settings", specifier = ">=2.4.0,<3.0.0" },
{ name = "pyyaml", specifier = ">=5.3" },
{ name = "requests", specifier = ">=2,<3" },
@ -2450,7 +2451,7 @@ typing = [
[[package]]
name = "langchain-core"
version = "0.3.40"
version = "0.3.43"
source = { editable = "libs/core" }
dependencies = [
{ name = "jsonpatch" },
@ -2573,7 +2574,7 @@ dependencies = [
[[package]]
name = "langchain-groq"
version = "0.2.4"
version = "0.2.5"
source = { editable = "libs/partners/groq" }
dependencies = [
{ name = "groq" },
@ -2732,7 +2733,7 @@ typing = []
[[package]]
name = "langchain-openai"
version = "0.3.7"
version = "0.3.8"
source = { editable = "libs/partners/openai" }
dependencies = [
{ name = "langchain-core" },
@ -2743,7 +2744,7 @@ dependencies = [
[package.metadata]
requires-dist = [
{ name = "langchain-core", editable = "libs/core" },
{ name = "openai", specifier = ">=1.58.1,<2.0.0" },
{ name = "openai", specifier = ">=1.66.0,<2.0.0" },
{ name = "tiktoken", specifier = ">=0.7,<1" },
]
@ -3630,7 +3631,7 @@ wheels = [
[[package]]
name = "openai"
version = "1.61.1"
version = "1.66.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@ -3642,9 +3643,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/d9/cf/61e71ce64cf0a38f029da0f9a5f10c9fa0e69a7a977b537126dac50adfea/openai-1.61.1.tar.gz", hash = "sha256:ce1851507218209961f89f3520e06726c0aa7d0512386f0f977e3ac3e4f2472e", size = 350784 }
sdist = { url = "https://files.pythonhosted.org/packages/d8/e1/b3e1fda1aa32d4f40d4de744e91de4de65c854c3e53c63342e4b5f9c5995/openai-1.66.2.tar.gz", hash = "sha256:9b3a843c25f81ee09b6469d483d9fba779d5c6ea41861180772f043481b0598d", size = 397041 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9a/b6/2e2a011b2dc27a6711376808b4cd8c922c476ea0f1420b39892117fa8563/openai-1.61.1-py3-none-any.whl", hash = "sha256:72b0826240ce26026ac2cd17951691f046e5be82ad122d20a8e1b30ca18bd11e", size = 463126 },
{ url = "https://files.pythonhosted.org/packages/2c/6f/3315b3583ffe3e31c55b446cb22d2a7c235e65ca191674fffae62deb3c11/openai-1.66.2-py3-none-any.whl", hash = "sha256:75194057ee6bb8b732526387b6041327a05656d976fc21c064e21c8ac6b07999", size = 567268 },
]
[[package]]