diff --git a/libs/partners/qdrant/langchain_qdrant/qdrant.py b/libs/partners/qdrant/langchain_qdrant/qdrant.py index 165ca66cf88..b21dae2efe2 100644 --- a/libs/partners/qdrant/langchain_qdrant/qdrant.py +++ b/libs/partners/qdrant/langchain_qdrant/qdrant.py @@ -960,8 +960,8 @@ class QdrantVectorStore(VectorStore): yield batch_ids, points + @staticmethod def _build_payloads( - self, texts: Iterable[str], metadatas: Optional[List[dict]], content_payload_key: str, diff --git a/libs/partners/qdrant/langchain_qdrant/vectorstores.py b/libs/partners/qdrant/langchain_qdrant/vectorstores.py index 9b8af6f7273..1b4941604f6 100644 --- a/libs/partners/qdrant/langchain_qdrant/vectorstores.py +++ b/libs/partners/qdrant/langchain_qdrant/vectorstores.py @@ -57,7 +57,7 @@ def sync_call_fallback(method: Callable) -> Callable: except NotImplementedError: # If the async method is not implemented, call the synchronous method # by removing the first letter from the method name. For example, - # if the async method is called ``aaad_texts``, the synchronous method + # if the async method is called ``aadd_texts``, the synchronous method # will be called ``aad_texts``. return await run_in_executor( None, getattr(self, method.__name__[1:]), *args, **kwargs @@ -921,7 +921,7 @@ class Qdrant(VectorStore): Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: - query: Text to look up documents similar to. + embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. @@ -984,7 +984,7 @@ class Qdrant(VectorStore): Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: - query: Text to look up documents similar to. + embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. @@ -1072,7 +1072,7 @@ class Qdrant(VectorStore): Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: - query: Text to look up documents similar to. + embedding: Embedding vector to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20.