feat(embeddings): text-embeddings-inference (#14288)

- **Description:** Added a notebook to illustrate how to use
`text-embeddings-inference` from huggingface. As
`HuggingFaceHubEmbeddings` was using a deprecated client, I made the
most of this PR updating that too.

- **Issue:** #13286 

- **Dependencies**: None

- **Tag maintainer:** @baskaryan
This commit is contained in:
Massimiliano Pronesti
2023-12-06 02:22:05 +01:00
committed by GitHub
parent 85b88c33f3
commit c215a4c9ec
2 changed files with 195 additions and 18 deletions

View File

@@ -0,0 +1,171 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ceabf1eb-ca96-4791-90ad-e9acb31edf5c",
"metadata": {},
"source": [
"# Text Embeddings Inference\n",
"\n",
"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.\n",
"\n",
"To use it within langchain, first install `huggingface-hub`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "579f0677-aa06-4ad8-a816-3520c8d6923c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install huggingface-hub -q"
]
},
{
"cell_type": "markdown",
"id": "7c6b1015-bc3f-4283-93d5-11387be1b98d",
"metadata": {},
"source": [
"Then expose an embedding model using TEI. For instance, using Docker, you can serve `BAAI/bge-large-en-v1.5` as follows:\n",
"\n",
"```bash\n",
"model=BAAI/bge-large-en-v1.5\n",
"revision=refs/pr/5\n",
"volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run\n",
"\n",
"docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "48eebefc-a631-48dd-9bde-4a987f81aa20",
"metadata": {},
"source": [
"Finally, instantiate the client and embed your texts."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "22b09777-5ba3-4fbe-81cf-a702a55df9c4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings import HuggingFaceHubEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c26fca9f-cfdb-45e5-a0bd-f677ff8b9d92",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter your HF API Key:\n",
"\n",
" ········\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
"huggingfacehub_api_token = getpass(\"Enter your HF API Key:\\n\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f9a92970-16f4-458c-b186-2a83e9f7d840",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"embeddings = HuggingFaceHubEmbeddings(\n",
" model=\"http://localhost:8080\", huggingfacehub_api_token=huggingfacehub_api_token\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "42105438-9fee-460a-9c52-b7c595722758",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"text = \"What is deep learning?\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "20167762-0988-4205-bbd4-1f20fd9dd247",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[0.018113142, 0.00302585, -0.049911194]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result = embeddings.embed_query(text)\n",
"query_result[:3]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "54b87cf6-86ad-46f5-b2cd-17eb43cb4d0b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "conda_python3",
"language": "python",
"name": "conda_python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}