mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-22 19:09:57 +00:00
feat(embeddings): text-embeddings-inference (#14288)
- **Description:** Added a notebook to illustrate how to use `text-embeddings-inference` from huggingface. As `HuggingFaceHubEmbeddings` was using a deprecated client, I made the most of this PR updating that too. - **Issue:** #13286 - **Dependencies**: None - **Tag maintainer:** @baskaryan
This commit is contained in:
committed by
GitHub
parent
85b88c33f3
commit
c215a4c9ec
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
@@ -5,7 +6,7 @@ from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2"
|
||||
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
||||
VALID_TASKS = ("feature-extraction",)
|
||||
|
||||
|
||||
@@ -20,17 +21,19 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.embeddings import HuggingFaceHubEmbeddings
|
||||
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
||||
model = "sentence-transformers/all-mpnet-base-v2"
|
||||
hf = HuggingFaceHubEmbeddings(
|
||||
repo_id=repo_id,
|
||||
model=model,
|
||||
task="feature-extraction",
|
||||
huggingfacehub_api_token="my-api-key",
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
repo_id: str = DEFAULT_REPO_ID
|
||||
model: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
repo_id: Optional[str] = None
|
||||
"""Huggingfacehub repository id, for backward compatibility."""
|
||||
task: Optional[str] = "feature-extraction"
|
||||
"""Task to call the model with."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
@@ -50,22 +53,23 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
try:
|
||||
from huggingface_hub.inference_api import InferenceApi
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
repo_id = values["repo_id"]
|
||||
if not repo_id.startswith("sentence-transformers"):
|
||||
raise ValueError(
|
||||
"Currently only 'sentence-transformers' embedding models "
|
||||
f"are supported. Got invalid 'repo_id' {repo_id}."
|
||||
)
|
||||
client = InferenceApi(
|
||||
repo_id=repo_id,
|
||||
if values["model"]:
|
||||
values["repo_id"] = values["model"]
|
||||
elif values["repo_id"]:
|
||||
values["model"] = values["repo_id"]
|
||||
else:
|
||||
values["model"] = DEFAULT_MODEL
|
||||
values["repo_id"] = DEFAULT_MODEL
|
||||
|
||||
client = InferenceClient(
|
||||
model=values["model"],
|
||||
token=huggingfacehub_api_token,
|
||||
task=values.get("task"),
|
||||
)
|
||||
if client.task not in VALID_TASKS:
|
||||
if values["task"] not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {client.task}, "
|
||||
f"Got invalid task {values['task']}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
values["client"] = client
|
||||
@@ -88,8 +92,10 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
# replace newlines, which can negatively affect performance.
|
||||
texts = [text.replace("\n", " ") for text in texts]
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
responses = self.client(inputs=texts, params=_model_kwargs)
|
||||
return responses
|
||||
responses = self.client.post(
|
||||
json={"inputs": texts, "parameters": _model_kwargs, "task": self.task}
|
||||
)
|
||||
return json.loads(responses.decode())
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||
|
Reference in New Issue
Block a user