mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-30 10:23:30 +00:00
feat(embeddings): text-embeddings-inference (#14288)
- **Description:** Added a notebook to illustrate how to use `text-embeddings-inference` from huggingface. As `HuggingFaceHubEmbeddings` was using a deprecated client, I made the most of this PR updating that too. - **Issue:** #13286 - **Dependencies**: None - **Tag maintainer:** @baskaryan
This commit is contained in:
parent
85b88c33f3
commit
c215a4c9ec
@ -0,0 +1,171 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ceabf1eb-ca96-4791-90ad-e9acb31edf5c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Text Embeddings Inference\n",
|
||||
"\n",
|
||||
"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.\n",
|
||||
"\n",
|
||||
"To use it within langchain, first install `huggingface-hub`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "579f0677-aa06-4ad8-a816-3520c8d6923c",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install huggingface-hub -q"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7c6b1015-bc3f-4283-93d5-11387be1b98d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Then expose an embedding model using TEI. For instance, using Docker, you can serve `BAAI/bge-large-en-v1.5` as follows:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"model=BAAI/bge-large-en-v1.5\n",
|
||||
"revision=refs/pr/5\n",
|
||||
"volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run\n",
|
||||
"\n",
|
||||
"docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "48eebefc-a631-48dd-9bde-4a987f81aa20",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Finally, instantiate the client and embed your texts."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "22b09777-5ba3-4fbe-81cf-a702a55df9c4",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import HuggingFaceHubEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "c26fca9f-cfdb-45e5-a0bd-f677ff8b9d92",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdin",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Enter your HF API Key:\n",
|
||||
"\n",
|
||||
" ········\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"huggingfacehub_api_token = getpass(\"Enter your HF API Key:\\n\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "f9a92970-16f4-458c-b186-2a83e9f7d840",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = HuggingFaceHubEmbeddings(\n",
|
||||
" model=\"http://localhost:8080\", huggingfacehub_api_token=huggingfacehub_api_token\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "42105438-9fee-460a-9c52-b7c595722758",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text = \"What is deep learning?\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "20167762-0988-4205-bbd4-1f20fd9dd247",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[0.018113142, 0.00302585, -0.049911194]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"query_result = embeddings.embed_query(text)\n",
|
||||
"query_result[:3]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "54b87cf6-86ad-46f5-b2cd-17eb43cb4d0b",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc_result = embeddings.embed_documents([text])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "conda_python3",
|
||||
"language": "python",
|
||||
"name": "conda_python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,3 +1,4 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
@ -5,7 +6,7 @@ from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2"
|
||||
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
||||
VALID_TASKS = ("feature-extraction",)
|
||||
|
||||
|
||||
@ -20,17 +21,19 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.embeddings import HuggingFaceHubEmbeddings
|
||||
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
||||
model = "sentence-transformers/all-mpnet-base-v2"
|
||||
hf = HuggingFaceHubEmbeddings(
|
||||
repo_id=repo_id,
|
||||
model=model,
|
||||
task="feature-extraction",
|
||||
huggingfacehub_api_token="my-api-key",
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
repo_id: str = DEFAULT_REPO_ID
|
||||
model: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
repo_id: Optional[str] = None
|
||||
"""Huggingfacehub repository id, for backward compatibility."""
|
||||
task: Optional[str] = "feature-extraction"
|
||||
"""Task to call the model with."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
@ -50,22 +53,23 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
try:
|
||||
from huggingface_hub.inference_api import InferenceApi
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
repo_id = values["repo_id"]
|
||||
if not repo_id.startswith("sentence-transformers"):
|
||||
raise ValueError(
|
||||
"Currently only 'sentence-transformers' embedding models "
|
||||
f"are supported. Got invalid 'repo_id' {repo_id}."
|
||||
)
|
||||
client = InferenceApi(
|
||||
repo_id=repo_id,
|
||||
if values["model"]:
|
||||
values["repo_id"] = values["model"]
|
||||
elif values["repo_id"]:
|
||||
values["model"] = values["repo_id"]
|
||||
else:
|
||||
values["model"] = DEFAULT_MODEL
|
||||
values["repo_id"] = DEFAULT_MODEL
|
||||
|
||||
client = InferenceClient(
|
||||
model=values["model"],
|
||||
token=huggingfacehub_api_token,
|
||||
task=values.get("task"),
|
||||
)
|
||||
if client.task not in VALID_TASKS:
|
||||
if values["task"] not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {client.task}, "
|
||||
f"Got invalid task {values['task']}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
values["client"] = client
|
||||
@ -88,8 +92,10 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings):
|
||||
# replace newlines, which can negatively affect performance.
|
||||
texts = [text.replace("\n", " ") for text in texts]
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
responses = self.client(inputs=texts, params=_model_kwargs)
|
||||
return responses
|
||||
responses = self.client.post(
|
||||
json={"inputs": texts, "parameters": _model_kwargs, "task": self.task}
|
||||
)
|
||||
return json.loads(responses.decode())
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||
|
Loading…
Reference in New Issue
Block a user