StreamlitCallbackHandler (#6315)

A new implementation of `StreamlitCallbackHandler`. It formats Agent
thoughts into Streamlit expanders.

You can see the handler in action here:
https://langchain-mrkl.streamlit.app/

Per a discussion with Harrison, we'll be adding a
`StreamlitCallbackHandler` implementation to an upcoming
[Streamlit](https://github.com/streamlit/streamlit) release as well, and
will be updating it as we add new LLM- and LangChain-specific features
to Streamlit.

The idea with this PR is that the LangChain `StreamlitCallbackHandler`
will "auto-update" in a way that keeps it forward- (and backward-)
compatible with Streamlit. If the user has an older Streamlit version
installed, the LangChain `StreamlitCallbackHandler` will be used; if
they have a newer Streamlit version that has an updated
`StreamlitCallbackHandler`, that implementation will be used instead.

(I'm opening this as a draft to get the conversation going and make sure
we're on the same page. We're really excited to land this into
LangChain!)

#### Who can review?

@agola11, @hwchase17
This commit is contained in:
Tim Conkling 2023-06-22 16:14:28 -04:00 committed by GitHub
parent 74ac6fb6b9
commit c28990d871
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 939 additions and 638 deletions

View File

@ -21,9 +21,7 @@ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.streaming_stdout_final_only import (
FinalStreamingStdOutCallbackHandler,
)
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out here.
# from langchain.callbacks.streamlit import StreamlitCallbackHandler
from langchain.callbacks.streamlit import LLMThoughtLabeler, StreamlitCallbackHandler
from langchain.callbacks.wandb_callback import WandbCallbackHandler
from langchain.callbacks.whylabs_callback import WhyLabsCallbackHandler
@ -42,8 +40,8 @@ __all__ = [
"OpenAICallbackHandler",
"StdOutCallbackHandler",
"StreamingStdOutCallbackHandler",
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out here.
# "StreamlitCallbackHandler",
"StreamlitCallbackHandler",
"LLMThoughtLabeler",
"WandbCallbackHandler",
"WhyLabsCallbackHandler",
"get_openai_callback",

View File

@ -1,104 +0,0 @@
"""Callback Handler that logs to streamlit."""
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
class StreamlitCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs to streamlit."""
def __init__(self) -> None:
try:
import streamlit as st
except ImportError as e:
raise ImportError(
"Could not import streamlit Python package. "
"Please install it with `pip install streamlit`."
) from e
self.tokens_area = st.empty()
self.tokens_stream = ""
self.st = st
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Print out the prompts."""
self.st.write("Prompts after formatting:")
for prompt in prompts:
self.st.write(prompt)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.tokens_stream += token
self.tokens_area.write(self.tokens_stream)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Print out that we are entering a chain."""
class_name = serialized["name"]
self.st.write(f"Entering new {class_name} chain...")
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Print out that we finished a chain."""
self.st.write("Finished chain.")
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Print out the log in specified color."""
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
# st.write requires two spaces before a newline to render it
self.st.markdown(action.log.replace("\n", " \n"))
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""If not the final action, print out observation."""
self.st.write(f"{observation_prefix}{output}")
self.st.write(llm_prefix)
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Run on text."""
# st.write requires two spaces before a newline to render it
self.st.write(text.replace("\n", " \n"))
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run on agent end."""
# st.write requires two spaces before a newline to render it
self.st.write(finish.log.replace("\n", " \n"))

View File

@ -0,0 +1,79 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.streamlit.streamlit_callback_handler import (
LLMThoughtLabeler as LLMThoughtLabeler,
)
from langchain.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler as _InternalStreamlitCallbackHandler,
)
if TYPE_CHECKING:
from streamlit.delta_generator import DeltaGenerator
def StreamlitCallbackHandler(
parent_container: DeltaGenerator,
*,
max_thought_containers: int = 4,
expand_new_thoughts: bool = True,
collapse_completed_thoughts: bool = True,
thought_labeler: Optional[LLMThoughtLabeler] = None,
) -> BaseCallbackHandler:
"""Construct a new StreamlitCallbackHandler. This CallbackHandler is geared towards
use with a LangChain Agent; it displays the Agent's LLM and tool-usage "thoughts"
inside a series of Streamlit expanders.
Parameters
----------
parent_container
The `st.container` that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers
The max number of completed LLM thought containers to show at once. When this
threshold is reached, a new thought will cause the oldest thoughts to be
collapsed into a "History" expander. Defaults to 4.
expand_new_thoughts
Each LLM "thought" gets its own `st.expander`. This param controls whether that
expander is expanded by default. Defaults to True.
collapse_completed_thoughts
If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler
An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
Returns
-------
A new StreamlitCallbackHandler instance.
Note that this is an "auto-updating" API: if the installed version of Streamlit
has a more recent StreamlitCallbackHandler implementation, an instance of that class
will be used.
"""
# If we're using a version of Streamlit that implements StreamlitCallbackHandler,
# delegate to it instead of using our built-in handler. The official handler is
# guaranteed to support the same set of kwargs.
try:
from streamlit.external.langchain import (
StreamlitCallbackHandler as OfficialStreamlitCallbackHandler, # type: ignore # noqa: 501
)
return OfficialStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)
except ImportError:
return _InternalStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)

View File

@ -0,0 +1,152 @@
from __future__ import annotations
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional
if TYPE_CHECKING:
from streamlit.delta_generator import DeltaGenerator
from streamlit.type_util import SupportsStr
class ChildType(Enum):
MARKDOWN = "MARKDOWN"
EXCEPTION = "EXCEPTION"
class ChildRecord(NamedTuple):
type: ChildType
kwargs: Dict[str, Any]
dg: DeltaGenerator
class MutableExpander:
"""A Streamlit expander that can be renamed and dynamically expanded/collapsed."""
def __init__(self, parent_container: DeltaGenerator, label: str, expanded: bool):
"""Create a new MutableExpander.
Parameters
----------
parent_container
The `st.container` that the expander will be created inside.
The expander transparently deletes and recreates its underlying
`st.expander` instance when its label changes, and it uses
`parent_container` to ensure it recreates this underlying expander in the
same location onscreen.
label
The expander's initial label.
expanded
The expander's initial `expanded` value.
"""
self._label = label
self._expanded = expanded
self._parent_cursor = parent_container.empty()
self._container = self._parent_cursor.expander(label, expanded)
self._child_records: List[ChildRecord] = []
@property
def label(self) -> str:
"""The expander's label string."""
return self._label
@property
def expanded(self) -> bool:
"""True if the expander was created with `expanded=True`."""
return self._expanded
def clear(self) -> None:
"""Remove the container and its contents entirely. A cleared container can't
be reused.
"""
self._container = self._parent_cursor.empty()
self._child_records.clear()
def append_copy(self, other: MutableExpander) -> None:
"""Append a copy of another MutableExpander's children to this
MutableExpander.
"""
other_records = other._child_records.copy()
for record in other_records:
self._create_child(record.type, record.kwargs)
def update(
self, *, new_label: Optional[str] = None, new_expanded: Optional[bool] = None
) -> None:
"""Change the expander's label and expanded state"""
if new_label is None:
new_label = self._label
if new_expanded is None:
new_expanded = self._expanded
if self._label == new_label and self._expanded == new_expanded:
# No change!
return
self._label = new_label
self._expanded = new_expanded
self._container = self._parent_cursor.expander(new_label, new_expanded)
prev_records = self._child_records
self._child_records = []
# Replay all children into the new container
for record in prev_records:
self._create_child(record.type, record.kwargs)
def markdown(
self,
body: SupportsStr,
unsafe_allow_html: bool = False,
*,
help: Optional[str] = None,
index: Optional[int] = None,
) -> int:
"""Add a Markdown element to the container and return its index."""
kwargs = {"body": body, "unsafe_allow_html": unsafe_allow_html, "help": help}
new_dg = self._get_dg(index).markdown(**kwargs) # type: ignore[arg-type]
record = ChildRecord(ChildType.MARKDOWN, kwargs, new_dg)
return self._add_record(record, index)
def exception(
self, exception: BaseException, *, index: Optional[int] = None
) -> int:
"""Add an Exception element to the container and return its index."""
kwargs = {"exception": exception}
new_dg = self._get_dg(index).exception(**kwargs)
record = ChildRecord(ChildType.EXCEPTION, kwargs, new_dg)
return self._add_record(record, index)
def _create_child(self, type: ChildType, kwargs: Dict[str, Any]) -> None:
"""Create a new child with the given params"""
if type == ChildType.MARKDOWN:
self.markdown(**kwargs)
elif type == ChildType.EXCEPTION:
self.exception(**kwargs)
else:
raise RuntimeError(f"Unexpected child type {type}")
def _add_record(self, record: ChildRecord, index: Optional[int]) -> int:
"""Add a ChildRecord to self._children. If `index` is specified, replace
the existing record at that index. Otherwise, append the record to the
end of the list.
Return the index of the added record.
"""
if index is not None:
# Replace existing child
self._child_records[index] = record
return index
# Append new child
self._child_records.append(record)
return len(self._child_records) - 1
def _get_dg(self, index: Optional[int]) -> DeltaGenerator:
if index is not None:
# Existing index: reuse child's DeltaGenerator
assert 0 <= index < len(self._child_records), f"Bad index: {index}"
return self._child_records[index].dg
# No index: use container's DeltaGenerator
return self._container

View File

@ -0,0 +1,406 @@
"""Callback Handler that prints to streamlit."""
from __future__ import annotations
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.streamlit.mutable_expander import MutableExpander
from langchain.schema import AgentAction, AgentFinish, LLMResult
if TYPE_CHECKING:
from streamlit.delta_generator import DeltaGenerator
def _convert_newlines(text: str) -> str:
"""Convert newline characters to markdown newline sequences
(space, space, newline).
"""
return text.replace("\n", " \n")
CHECKMARK_EMOJI = ""
THINKING_EMOJI = ":thinking_face:"
HISTORY_EMOJI = ":books:"
EXCEPTION_EMOJI = "⚠️"
class LLMThoughtState(Enum):
# The LLM is thinking about what to do next. We don't know which tool we'll run.
THINKING = "THINKING"
# The LLM has decided to run a tool. We don't have results from the tool yet.
RUNNING_TOOL = "RUNNING_TOOL"
# We have results from the tool.
COMPLETE = "COMPLETE"
class ToolRecord(NamedTuple):
name: str
input_str: str
class LLMThoughtLabeler:
"""
Generates markdown labels for LLMThought containers. Pass a custom
subclass of this to StreamlitCallbackHandler to override its default
labeling logic.
"""
def get_initial_label(self) -> str:
"""Return the markdown label for a new LLMThought that doesn't have
an associated tool yet.
"""
return f"{THINKING_EMOJI} **Thinking...**"
def get_tool_label(self, tool: ToolRecord, is_complete: bool) -> str:
"""Return the label for an LLMThought that has an associated
tool.
Parameters
----------
tool
The tool's ToolRecord
is_complete
True if the thought is complete; False if the thought
is still receiving input.
Returns
-------
The markdown label for the thought's container.
"""
input = tool.input_str
name = tool.name
emoji = CHECKMARK_EMOJI if is_complete else THINKING_EMOJI
if name == "_Exception":
emoji = EXCEPTION_EMOJI
name = "Parsing error"
idx = min([60, len(input)])
input = input[0:idx]
if len(tool.input_str) > idx:
input = input + "..."
input = input.replace("\n", " ")
label = f"{emoji} **{name}:** {input}"
return label
def get_history_label(self) -> str:
"""Return a markdown label for the special 'history' container
that contains overflow thoughts.
"""
return f"{HISTORY_EMOJI} **History**"
def get_final_agent_thought_label(self) -> str:
"""Return the markdown label for the agent's final thought -
the "Now I have the answer" thought, that doesn't involve
a tool.
"""
return f"{CHECKMARK_EMOJI} **Complete!**"
class LLMThought:
def __init__(
self,
parent_container: DeltaGenerator,
labeler: LLMThoughtLabeler,
expanded: bool,
collapse_on_complete: bool,
):
self._container = MutableExpander(
parent_container=parent_container,
label=labeler.get_initial_label(),
expanded=expanded,
)
self._state = LLMThoughtState.THINKING
self._llm_token_stream = ""
self._llm_token_writer_idx: Optional[int] = None
self._last_tool: Optional[ToolRecord] = None
self._collapse_on_complete = collapse_on_complete
self._labeler = labeler
@property
def container(self) -> MutableExpander:
"""The container we're writing into."""
return self._container
@property
def last_tool(self) -> Optional[ToolRecord]:
"""The last tool executed by this thought"""
return self._last_tool
def _reset_llm_token_stream(self) -> None:
self._llm_token_stream = ""
self._llm_token_writer_idx = None
def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str]) -> None:
self._reset_llm_token_stream()
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
# This is only called when the LLM is initialized with `streaming=True`
self._llm_token_stream += _convert_newlines(token)
self._llm_token_writer_idx = self._container.markdown(
self._llm_token_stream, index=self._llm_token_writer_idx
)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
# `response` is the concatenation of all the tokens received by the LLM.
# If we're receiving streaming tokens from `on_llm_new_token`, this response
# data is redundant
self._reset_llm_token_stream()
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._container.markdown("**LLM encountered an error...**")
self._container.exception(error)
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
# Called with the name of the tool we're about to run (in `serialized[name]`),
# and its input. We change our container's label to be the tool name.
self._state = LLMThoughtState.RUNNING_TOOL
tool_name = serialized["name"]
self._last_tool = ToolRecord(name=tool_name, input_str=input_str)
self._container.update(
new_label=self._labeler.get_tool_label(self._last_tool, is_complete=False)
)
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
self._container.markdown(f"**{output}**")
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._container.markdown("**Tool encountered an error...**")
self._container.exception(error)
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
# Called when we're about to kick off a new tool. The `action` data
# tells us the tool we're about to use, and the input we'll give it.
# We don't output anything here, because we'll receive this same data
# when `on_tool_start` is called immediately after.
pass
def complete(self, final_label: Optional[str] = None) -> None:
"""Finish the thought."""
if final_label is None and self._state == LLMThoughtState.RUNNING_TOOL:
assert (
self._last_tool is not None
), "_last_tool should never be null when _state == RUNNING_TOOL"
final_label = self._labeler.get_tool_label(
self._last_tool, is_complete=True
)
self._state = LLMThoughtState.COMPLETE
if self._collapse_on_complete:
self._container.update(new_label=final_label, new_expanded=False)
else:
self._container.update(new_label=final_label)
def clear(self) -> None:
"""Remove the thought from the screen. A cleared thought can't be reused."""
self._container.clear()
class StreamlitCallbackHandler(BaseCallbackHandler):
def __init__(
self,
parent_container: DeltaGenerator,
*,
max_thought_containers: int = 4,
expand_new_thoughts: bool = True,
collapse_completed_thoughts: bool = True,
thought_labeler: Optional[LLMThoughtLabeler] = None,
):
"""Create a StreamlitCallbackHandler instance.
Parameters
----------
parent_container
The `st.container` that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers
The max number of completed LLM thought containers to show at once. When
this threshold is reached, a new thought will cause the oldest thoughts to
be collapsed into a "History" expander. Defaults to 4.
expand_new_thoughts
Each LLM "thought" gets its own `st.expander`. This param controls whether
that expander is expanded by default. Defaults to True.
collapse_completed_thoughts
If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler
An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
"""
self._parent_container = parent_container
self._history_parent = parent_container.container()
self._history_container: Optional[MutableExpander] = None
self._current_thought: Optional[LLMThought] = None
self._completed_thoughts: List[LLMThought] = []
self._max_thought_containers = max(max_thought_containers, 1)
self._expand_new_thoughts = expand_new_thoughts
self._collapse_completed_thoughts = collapse_completed_thoughts
self._thought_labeler = thought_labeler or LLMThoughtLabeler()
def _require_current_thought(self) -> LLMThought:
"""Return our current LLMThought. Raise an error if we have no current
thought.
"""
if self._current_thought is None:
raise RuntimeError("Current LLMThought is unexpectedly None!")
return self._current_thought
def _get_last_completed_thought(self) -> Optional[LLMThought]:
"""Return our most recent completed LLMThought, or None if we don't have one."""
if len(self._completed_thoughts) > 0:
return self._completed_thoughts[len(self._completed_thoughts) - 1]
return None
@property
def _num_thought_containers(self) -> int:
"""The number of 'thought containers' we're currently showing: the
number of completed thought containers, the history container (if it exists),
and the current thought container (if it exists).
"""
count = len(self._completed_thoughts)
if self._history_container is not None:
count += 1
if self._current_thought is not None:
count += 1
return count
def _complete_current_thought(self, final_label: Optional[str] = None) -> None:
"""Complete the current thought, optionally assigning it a new label.
Add it to our _completed_thoughts list.
"""
thought = self._require_current_thought()
thought.complete(final_label)
self._completed_thoughts.append(thought)
self._current_thought = None
def _prune_old_thought_containers(self) -> None:
"""If we have too many thoughts onscreen, move older thoughts to the
'history container.'
"""
while (
self._num_thought_containers > self._max_thought_containers
and len(self._completed_thoughts) > 0
):
# Create our history container if it doesn't exist, and if
# max_thought_containers is > 1. (if max_thought_containers is 1, we don't
# have room to show history.)
if self._history_container is None and self._max_thought_containers > 1:
self._history_container = MutableExpander(
self._history_parent,
label=self._thought_labeler.get_history_label(),
expanded=False,
)
oldest_thought = self._completed_thoughts.pop(0)
if self._history_container is not None:
self._history_container.markdown(oldest_thought.container.label)
self._history_container.append_copy(oldest_thought.container)
oldest_thought.clear()
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
if self._current_thought is None:
self._current_thought = LLMThought(
parent_container=self._parent_container,
expanded=self._expand_new_thoughts,
collapse_on_complete=self._collapse_completed_thoughts,
labeler=self._thought_labeler,
)
self._current_thought.on_llm_start(serialized, prompts)
# We don't prune_old_thought_containers here, because our container won't
# be visible until it has a child.
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
self._require_current_thought().on_llm_new_token(token, **kwargs)
self._prune_old_thought_containers()
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
self._require_current_thought().on_llm_end(response, **kwargs)
self._prune_old_thought_containers()
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._require_current_thought().on_llm_error(error, **kwargs)
self._prune_old_thought_containers()
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
self._require_current_thought().on_tool_start(serialized, input_str, **kwargs)
self._prune_old_thought_containers()
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
self._require_current_thought().on_tool_end(
output, color, observation_prefix, llm_prefix, **kwargs
)
self._complete_current_thought()
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self._require_current_thought().on_tool_error(error, **kwargs)
self._prune_old_thought_containers()
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Any,
) -> None:
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
self._require_current_thought().on_agent_action(action, color, **kwargs)
self._prune_old_thought_containers()
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
if self._current_thought is not None:
self._current_thought.complete(
self._thought_labeler.get_final_agent_thought_label()
)
self._current_thought = None

703
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -110,8 +110,7 @@ langchainplus-sdk = ">=0.0.13"
awadb = {version = "^0.3.3", optional = true}
azure-search-documents = {version = "11.4.0a20230509004", source = "azure-sdk-dev", optional = true}
openllm = {version = ">=0.1.6", optional = true}
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out.
#streamlit = {version = "^1.18.0", optional = true}
streamlit = {version = "^1.18.0", optional = true, python = ">=3.8.1,<3.9.7 || >3.9.7,<4.0"}
[tool.poetry.group.docs.dependencies]
autodoc_pydantic = "^1.8.0"
@ -332,8 +331,7 @@ extended_testing = [
"html2text",
"py-trello",
"scikit-learn",
# now streamlit requires Python >=3.7, !=3.9.7 So, it is commented out.
# "streamlit",
"streamlit",
"pyspark",
"openai"
]

View File

@ -0,0 +1,31 @@
"""Integration tests for the StreamlitCallbackHandler module."""
import pytest
from langchain.agents import AgentType, initialize_agent, load_tools
# Import the internal StreamlitCallbackHandler from its module - and not from
# the `langchain.callbacks.streamlit` package - so that we don't end up using
# Streamlit's externally-provided callback handler.
from langchain.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler,
)
from langchain.llms import OpenAI
@pytest.mark.requires("streamlit")
def test_streamlit_callback_agent() -> None:
import streamlit as st
streamlit_callback = StreamlitCallbackHandler(st.container())
llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?",
callbacks=[streamlit_callback],
)

View File

@ -0,0 +1,86 @@
import builtins
import unittest
from typing import Any
from unittest import mock
from unittest.mock import MagicMock
from langchain.callbacks.streamlit import StreamlitCallbackHandler
class TestImport(unittest.TestCase):
"""Test the StreamlitCallbackHandler 'auto-updating' API"""
def setUp(self) -> None:
self.builtins_import = builtins.__import__
def tearDown(self) -> None:
builtins.__import__ = self.builtins_import
@mock.patch("langchain.callbacks.streamlit._InternalStreamlitCallbackHandler")
def test_create_internal_handler(self, mock_internal_handler: Any) -> None:
"""If we're using a Streamlit that does not expose its own
StreamlitCallbackHandler, use our own implementation.
"""
def external_import_error(
name: str, globals: Any, locals: Any, fromlist: Any, level: int
) -> Any:
if name == "streamlit.external.langchain":
raise ImportError
return self.builtins_import(name, globals, locals, fromlist, level)
builtins.__import__ = external_import_error # type: ignore[assignment]
parent_container = MagicMock()
thought_labeler = MagicMock()
StreamlitCallbackHandler(
parent_container,
max_thought_containers=1,
expand_new_thoughts=True,
collapse_completed_thoughts=False,
thought_labeler=thought_labeler,
)
# Our internal handler should be created
mock_internal_handler.assert_called_once_with(
parent_container,
max_thought_containers=1,
expand_new_thoughts=True,
collapse_completed_thoughts=False,
thought_labeler=thought_labeler,
)
def test_create_external_handler(self) -> None:
"""If we're using a Streamlit that *does* expose its own callback handler,
delegate to that implementation.
"""
mock_streamlit_module = MagicMock()
def external_import_success(
name: str, globals: Any, locals: Any, fromlist: Any, level: int
) -> Any:
if name == "streamlit.external.langchain":
return mock_streamlit_module
return self.builtins_import(name, globals, locals, fromlist, level)
builtins.__import__ = external_import_success # type: ignore[assignment]
parent_container = MagicMock()
thought_labeler = MagicMock()
StreamlitCallbackHandler(
parent_container,
max_thought_containers=1,
expand_new_thoughts=True,
collapse_completed_thoughts=False,
thought_labeler=thought_labeler,
)
# Streamlit's handler should be created
mock_streamlit_module.StreamlitCallbackHandler.assert_called_once_with(
parent_container,
max_thought_containers=1,
expand_new_thoughts=True,
collapse_completed_thoughts=False,
thought_labeler=thought_labeler,
)