update prompts

This commit is contained in:
Harrison Chase 2022-11-14 20:58:34 -08:00
parent bbb405a492
commit c28d5ec3ba
3 changed files with 110 additions and 6 deletions

View File

@ -5,6 +5,7 @@ from typing import Any, Callable, Dict, List
from pydantic import BaseModel, Extra, root_validator
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
from langchain.prompts.prompt import Prompt
class DynamicPrompt(BaseModel, BasePrompt):
@ -18,7 +19,7 @@ class DynamicPrompt(BaseModel, BasePrompt):
examples=["Say hi. Hi", "Say ho. Ho"],
example_separator="\n\n",
prefix="",
suffix="\n\nSay {foo}"
suffix="Say {foo}"
input_variables=["foo"],
max_length=200,
get_text_length=word_count
@ -110,3 +111,20 @@ class DynamicPrompt(BaseModel, BasePrompt):
except KeyError:
raise ValueError("Invalid prompt schema.")
return values
@classmethod
def from_structured_examples(
cls, examples: List[dict], example_prompt: Prompt, **kwargs: Any
) -> "DynamicPrompt":
"""Create prompt from structured examples.
Args:
examples: List of structured examples to use in the prompt.
example_prompt: Prompt used to format the examples.
**kwargs: Key-word arguments to passed through to init.
Returns:
The final prompt generated.
"""
string_examples = [example_prompt.format(**example) for example in examples]
return cls(examples=string_examples, **kwargs)

View File

@ -1,11 +1,12 @@
"""Optimized prompt schema definition."""
import re
from typing import Any, Callable, Dict, List
from typing import Any, Callable, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
from langchain.prompts.prompt import Prompt
from langchain.vectorstores.base import VectorStore
@ -28,6 +29,9 @@ class OptimizedPrompt(BaseModel):
)
"""
vectorstore: VectorStore
"""Vectorstore to use for storing the embeddings."""
example_separator: str = "\n\n"
"""Example separator, e.g. \n\n, for the dynamic prompt creation."""
@ -49,9 +53,6 @@ class OptimizedPrompt(BaseModel):
max_length: int = 2048
"""Max length for the prompt, beyond which examples are cut."""
vectorstore: VectorStore
"""Vectorstore to use for storing the embeddings."""
class Config:
"""Configuration for this pydantic object."""
@ -154,8 +155,65 @@ class OptimizedPrompt(BaseModel):
Returns:
The OptimizedPrompt instantiated, backed by a vector store.
"""
dict_examples = [{"text": example} for example in examples]
example_prompt = Prompt(input_variables=["text"], template="{text}")
return cls.from_structured_examples(
dict_examples,
example_prompt,
suffix,
input_variables,
embeddings,
vectorstore_cls=vectorstore_cls,
example_separator=example_separator,
prefix=prefix,
**vectorstore_cls_kwargs,
)
@classmethod
def from_structured_examples(
cls,
examples: List[dict],
example_prompt: Prompt,
suffix: str,
input_variables: List[str],
embeddings: Embeddings,
vectorstore_cls: VectorStore,
example_separator: str = "\n\n",
prefix: str = "",
example_key: Optional[str] = None,
**vectorstore_cls_kwargs: Any,
) -> "OptimizedPrompt":
"""Create k-shot prompt optimizer using example list and embeddings.
Reshuffles examples for the prompt dynamically based on query similarity.
Args:
examples: List of structured examples to use in the prompt.
example_prompt: Prompt used to format the examples.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
example_separator: The seperator to use in between examples. Defaults
to two new line characters.
prefix: String that should go before any examples. Generally includes
examples. Default to an empty string.
example_key: Optional string pointing to the key in the example to
vectorized. If None, will format the example in the example_prompt,
and then vectorize that whole string.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
The OptimizedPrompt instantiated, backed by a vector store.
"""
if example_key is None:
string_examples = [example_prompt.format(**example) for example in examples]
else:
string_examples = [example[example_key] for example in examples]
vectorstore = vectorstore_cls.from_texts(
examples, embeddings, **vectorstore_cls_kwargs
string_examples, embeddings, **vectorstore_cls_kwargs
)
return cls(
suffix=suffix,

View File

@ -98,6 +98,34 @@ class Prompt(BaseModel, BasePrompt):
template = prefix + example_str + suffix
return cls(input_variables=input_variables, template=template)
@classmethod
def from_structured_examples(
cls,
examples: List[dict],
example_prompt: "Prompt",
suffix: str,
input_variables: List[str],
**kwargs: Any,
) -> "Prompt":
"""Take examples in list format with prefix and suffix to create a prompt.
Intended be used as a way to dynamically create a prompt from examples.
Args:
examples: List of structured examples to use in the prompt.
example_prompt: Prompt used to format each example.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
**kwargs: Key-word arguments to be passed through to init.
Returns:
The final prompt generated.
"""
string_examples = [example_prompt.format(**example) for example in examples]
return cls.from_examples(string_examples, suffix, input_variables, **kwargs)
@classmethod
def from_file(cls, template_file: str, input_variables: List[str]) -> "Prompt":
"""Load a prompt from a file.