mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-16 08:06:14 +00:00
update prompts
This commit is contained in:
parent
bbb405a492
commit
c28d5ec3ba
@ -5,6 +5,7 @@ from typing import Any, Callable, Dict, List
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
|
||||
from langchain.prompts.prompt import Prompt
|
||||
|
||||
|
||||
class DynamicPrompt(BaseModel, BasePrompt):
|
||||
@ -18,7 +19,7 @@ class DynamicPrompt(BaseModel, BasePrompt):
|
||||
examples=["Say hi. Hi", "Say ho. Ho"],
|
||||
example_separator="\n\n",
|
||||
prefix="",
|
||||
suffix="\n\nSay {foo}"
|
||||
suffix="Say {foo}"
|
||||
input_variables=["foo"],
|
||||
max_length=200,
|
||||
get_text_length=word_count
|
||||
@ -110,3 +111,20 @@ class DynamicPrompt(BaseModel, BasePrompt):
|
||||
except KeyError:
|
||||
raise ValueError("Invalid prompt schema.")
|
||||
return values
|
||||
|
||||
@classmethod
|
||||
def from_structured_examples(
|
||||
cls, examples: List[dict], example_prompt: Prompt, **kwargs: Any
|
||||
) -> "DynamicPrompt":
|
||||
"""Create prompt from structured examples.
|
||||
|
||||
Args:
|
||||
examples: List of structured examples to use in the prompt.
|
||||
example_prompt: Prompt used to format the examples.
|
||||
**kwargs: Key-word arguments to passed through to init.
|
||||
|
||||
Returns:
|
||||
The final prompt generated.
|
||||
"""
|
||||
string_examples = [example_prompt.format(**example) for example in examples]
|
||||
return cls(examples=string_examples, **kwargs)
|
||||
|
@ -1,11 +1,12 @@
|
||||
"""Optimized prompt schema definition."""
|
||||
import re
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
|
||||
from langchain.prompts.prompt import Prompt
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
|
||||
|
||||
@ -28,6 +29,9 @@ class OptimizedPrompt(BaseModel):
|
||||
)
|
||||
"""
|
||||
|
||||
vectorstore: VectorStore
|
||||
"""Vectorstore to use for storing the embeddings."""
|
||||
|
||||
example_separator: str = "\n\n"
|
||||
"""Example separator, e.g. \n\n, for the dynamic prompt creation."""
|
||||
|
||||
@ -49,9 +53,6 @@ class OptimizedPrompt(BaseModel):
|
||||
max_length: int = 2048
|
||||
"""Max length for the prompt, beyond which examples are cut."""
|
||||
|
||||
vectorstore: VectorStore
|
||||
"""Vectorstore to use for storing the embeddings."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
@ -154,8 +155,65 @@ class OptimizedPrompt(BaseModel):
|
||||
Returns:
|
||||
The OptimizedPrompt instantiated, backed by a vector store.
|
||||
"""
|
||||
dict_examples = [{"text": example} for example in examples]
|
||||
example_prompt = Prompt(input_variables=["text"], template="{text}")
|
||||
return cls.from_structured_examples(
|
||||
dict_examples,
|
||||
example_prompt,
|
||||
suffix,
|
||||
input_variables,
|
||||
embeddings,
|
||||
vectorstore_cls=vectorstore_cls,
|
||||
example_separator=example_separator,
|
||||
prefix=prefix,
|
||||
**vectorstore_cls_kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_structured_examples(
|
||||
cls,
|
||||
examples: List[dict],
|
||||
example_prompt: Prompt,
|
||||
suffix: str,
|
||||
input_variables: List[str],
|
||||
embeddings: Embeddings,
|
||||
vectorstore_cls: VectorStore,
|
||||
example_separator: str = "\n\n",
|
||||
prefix: str = "",
|
||||
example_key: Optional[str] = None,
|
||||
**vectorstore_cls_kwargs: Any,
|
||||
) -> "OptimizedPrompt":
|
||||
"""Create k-shot prompt optimizer using example list and embeddings.
|
||||
|
||||
Reshuffles examples for the prompt dynamically based on query similarity.
|
||||
|
||||
Args:
|
||||
examples: List of structured examples to use in the prompt.
|
||||
example_prompt: Prompt used to format the examples.
|
||||
suffix: String to go after the list of examples. Should generally
|
||||
set up the user's input.
|
||||
input_variables: A list of variable names the final prompt template
|
||||
will expect.
|
||||
embeddings: An initialized embedding API interface, e.g. OpenAIEmbeddings().
|
||||
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
|
||||
example_separator: The seperator to use in between examples. Defaults
|
||||
to two new line characters.
|
||||
prefix: String that should go before any examples. Generally includes
|
||||
examples. Default to an empty string.
|
||||
example_key: Optional string pointing to the key in the example to
|
||||
vectorized. If None, will format the example in the example_prompt,
|
||||
and then vectorize that whole string.
|
||||
vectorstore_cls_kwargs: optional kwargs containing url for vector store
|
||||
|
||||
Returns:
|
||||
The OptimizedPrompt instantiated, backed by a vector store.
|
||||
"""
|
||||
if example_key is None:
|
||||
string_examples = [example_prompt.format(**example) for example in examples]
|
||||
else:
|
||||
string_examples = [example[example_key] for example in examples]
|
||||
vectorstore = vectorstore_cls.from_texts(
|
||||
examples, embeddings, **vectorstore_cls_kwargs
|
||||
string_examples, embeddings, **vectorstore_cls_kwargs
|
||||
)
|
||||
return cls(
|
||||
suffix=suffix,
|
||||
|
@ -98,6 +98,34 @@ class Prompt(BaseModel, BasePrompt):
|
||||
template = prefix + example_str + suffix
|
||||
return cls(input_variables=input_variables, template=template)
|
||||
|
||||
@classmethod
|
||||
def from_structured_examples(
|
||||
cls,
|
||||
examples: List[dict],
|
||||
example_prompt: "Prompt",
|
||||
suffix: str,
|
||||
input_variables: List[str],
|
||||
**kwargs: Any,
|
||||
) -> "Prompt":
|
||||
"""Take examples in list format with prefix and suffix to create a prompt.
|
||||
|
||||
Intended be used as a way to dynamically create a prompt from examples.
|
||||
|
||||
Args:
|
||||
examples: List of structured examples to use in the prompt.
|
||||
example_prompt: Prompt used to format each example.
|
||||
suffix: String to go after the list of examples. Should generally
|
||||
set up the user's input.
|
||||
input_variables: A list of variable names the final prompt template
|
||||
will expect.
|
||||
**kwargs: Key-word arguments to be passed through to init.
|
||||
|
||||
Returns:
|
||||
The final prompt generated.
|
||||
"""
|
||||
string_examples = [example_prompt.format(**example) for example in examples]
|
||||
return cls.from_examples(string_examples, suffix, input_variables, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def from_file(cls, template_file: str, input_variables: List[str]) -> "Prompt":
|
||||
"""Load a prompt from a file.
|
||||
|
Loading…
Reference in New Issue
Block a user