mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 13:36:15 +00:00
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
from typing import Any, Dict, List, Optional # type: ignore[import-not-found]
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
|
||||
|
||||
@@ -26,7 +26,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
model_name: str = DEFAULT_MODEL_NAME
|
||||
"""Model name to use."""
|
||||
cache_folder: Optional[str] = None
|
||||
@@ -51,7 +51,6 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
import sentence_transformers # type: ignore[import]
|
||||
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"Could not import sentence_transformers python package. "
|
||||
@@ -62,10 +61,10 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
|
||||
)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = "forbid"
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Compute doc embeddings using a HuggingFace transformer model.
|
||||
|
@@ -1,9 +1,11 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
import os
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
from langchain_core.utils import from_env
|
||||
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
||||
VALID_TASKS = ("feature-extraction",)
|
||||
@@ -28,8 +30,8 @@ class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
async_client: Any #: :meta private:
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = None #: :meta private:
|
||||
model: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
repo_id: Optional[str] = None
|
||||
@@ -39,22 +41,20 @@ class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
huggingfacehub_api_token: Optional[str] = Field(
|
||||
default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None)
|
||||
)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
protected_namespaces=(),
|
||||
)
|
||||
|
||||
extra = "forbid"
|
||||
|
||||
@root_validator(pre=False, skip_on_failure=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
@model_validator(mode="after")
|
||||
def validate_environment(self) -> Self:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["huggingfacehub_api_token"] = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN", None
|
||||
)
|
||||
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HF_TOKEN", None
|
||||
huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv(
|
||||
"HF_TOKEN"
|
||||
)
|
||||
|
||||
try:
|
||||
@@ -63,38 +63,38 @@ class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
|
||||
InferenceClient,
|
||||
)
|
||||
|
||||
if values["model"]:
|
||||
values["repo_id"] = values["model"]
|
||||
elif values["repo_id"]:
|
||||
values["model"] = values["repo_id"]
|
||||
if self.model:
|
||||
self.repo_id = self.model
|
||||
elif self.repo_id:
|
||||
self.model = self.repo_id
|
||||
else:
|
||||
values["model"] = DEFAULT_MODEL
|
||||
values["repo_id"] = DEFAULT_MODEL
|
||||
self.model = DEFAULT_MODEL
|
||||
self.repo_id = DEFAULT_MODEL
|
||||
|
||||
client = InferenceClient(
|
||||
model=values["model"],
|
||||
model=self.model,
|
||||
token=huggingfacehub_api_token,
|
||||
)
|
||||
|
||||
async_client = AsyncInferenceClient(
|
||||
model=values["model"],
|
||||
model=self.model,
|
||||
token=huggingfacehub_api_token,
|
||||
)
|
||||
|
||||
if values["task"] not in VALID_TASKS:
|
||||
if self.task not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {values['task']}, "
|
||||
f"Got invalid task {self.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
values["client"] = client
|
||||
values["async_client"] = async_client
|
||||
self.client = client
|
||||
self.async_client = async_client
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import huggingface_hub python package. "
|
||||
"Please install it with `pip install huggingface_hub`."
|
||||
)
|
||||
return values
|
||||
return self
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
|
||||
|
Reference in New Issue
Block a user