multiple: pydantic 2 compatibility, v0.3 (#26443)

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
This commit is contained in:
Erick Friis
2024-09-13 14:38:45 -07:00
committed by GitHub
parent d9813bdbbc
commit c2a3021bb0
1402 changed files with 38318 additions and 30410 deletions

View File

@@ -1,7 +1,7 @@
from typing import Any, Dict, List, Optional # type: ignore[import-not-found]
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
@@ -26,7 +26,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
)
"""
client: Any #: :meta private:
client: Any = None #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
@@ -51,7 +51,6 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
super().__init__(**kwargs)
try:
import sentence_transformers # type: ignore[import]
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
@@ -62,10 +61,10 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = "forbid"
model_config = ConfigDict(
extra="forbid",
protected_namespaces=(),
)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.