mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 19:47:13 +00:00
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
This commit is contained in:
@@ -9,8 +9,9 @@ from langchain_core.callbacks import (
|
||||
)
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.outputs import GenerationChunk
|
||||
from langchain_core.pydantic_v1 import Field, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
||||
from langchain_core.utils import from_env, get_pydantic_field_names
|
||||
from pydantic import ConfigDict, Field, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -71,7 +72,9 @@ class HuggingFaceEndpoint(LLM):
|
||||
should be pass as env variable in `HF_INFERENCE_ENDPOINT`"""
|
||||
repo_id: Optional[str] = None
|
||||
"""Repo to use. If endpoint_url is not specified then this needs to given"""
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
huggingfacehub_api_token: Optional[str] = Field(
|
||||
default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None)
|
||||
)
|
||||
max_new_tokens: int = 512
|
||||
"""Maximum number of generated tokens"""
|
||||
top_k: Optional[int] = None
|
||||
@@ -112,19 +115,19 @@ class HuggingFaceEndpoint(LLM):
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `call` not explicitly specified"""
|
||||
model: str
|
||||
client: Any
|
||||
async_client: Any
|
||||
client: Any = None #: :meta private:
|
||||
async_client: Any = None #: :meta private:
|
||||
task: Optional[str] = None
|
||||
"""Task to call the model with.
|
||||
Should be a task that returns `generated_text` or `summary_text`."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
)
|
||||
|
||||
extra = "forbid"
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
@@ -182,8 +185,8 @@ class HuggingFaceEndpoint(LLM):
|
||||
)
|
||||
return values
|
||||
|
||||
@root_validator(pre=False, skip_on_failure=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
@model_validator(mode="after")
|
||||
def validate_environment(self) -> Self:
|
||||
"""Validate that package is installed and that the API token is valid."""
|
||||
try:
|
||||
from huggingface_hub import login # type: ignore[import]
|
||||
@@ -194,12 +197,8 @@ class HuggingFaceEndpoint(LLM):
|
||||
"Please install it with `pip install huggingface_hub`."
|
||||
)
|
||||
|
||||
values["huggingfacehub_api_token"] = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN", None
|
||||
)
|
||||
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HF_TOKEN", None
|
||||
huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv(
|
||||
"HF_TOKEN"
|
||||
)
|
||||
|
||||
if huggingfacehub_api_token is not None:
|
||||
@@ -213,20 +212,20 @@ class HuggingFaceEndpoint(LLM):
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, InferenceClient
|
||||
|
||||
values["client"] = InferenceClient(
|
||||
model=values["model"],
|
||||
timeout=values["timeout"],
|
||||
self.client = InferenceClient(
|
||||
model=self.model,
|
||||
timeout=self.timeout,
|
||||
token=huggingfacehub_api_token,
|
||||
**values["server_kwargs"],
|
||||
**self.server_kwargs,
|
||||
)
|
||||
values["async_client"] = AsyncInferenceClient(
|
||||
model=values["model"],
|
||||
timeout=values["timeout"],
|
||||
self.async_client = AsyncInferenceClient(
|
||||
model=self.model,
|
||||
timeout=self.timeout,
|
||||
token=huggingfacehub_api_token,
|
||||
**values["server_kwargs"],
|
||||
**self.server_kwargs,
|
||||
)
|
||||
|
||||
return values
|
||||
return self
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
|
@@ -7,6 +7,7 @@ from typing import Any, Iterator, List, Mapping, Optional
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import BaseLLM
|
||||
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||||
from pydantic import ConfigDict
|
||||
|
||||
DEFAULT_MODEL_ID = "gpt2"
|
||||
DEFAULT_TASK = "text-generation"
|
||||
@@ -53,7 +54,7 @@ class HuggingFacePipeline(BaseLLM):
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
"""
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
pipeline: Any = None #: :meta private:
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name to use."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
@@ -63,10 +64,9 @@ class HuggingFacePipeline(BaseLLM):
|
||||
batch_size: int = DEFAULT_BATCH_SIZE
|
||||
"""Batch size to use when passing multiple documents to generate."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = "forbid"
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_model_id(
|
||||
|
Reference in New Issue
Block a user