mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 15:03:21 +00:00
Load Run Evaluator (#7101)
Current problems: 1. Evaluating LLMs or Chat models isn't smooth. Even specifying 'generations' as the output inserts a redundant list into the eval template 2. Configuring input / prediction / reference keys in the `get_qa_evaluator` function is confusing. Unless you are using a chain with the default keys, you have to specify all the variables and need to reason about whether the key corresponds to the traced run's inputs, outputs or the examples inputs or outputs. Proposal: - Configure the run evaluator according to a model. Use the model type and input/output keys to assert compatibility where possible. Only need to specify a reference_key for certain evaluators (which is less confusing than specifying input keys) When does this work: - If you have your langchain model available (assumed always for run_on_dataset flow) - If you are evaluating an LLM, Chat model, or chain - If the LLM or chat models are traced by langchain (wouldn't work if you add an incompatible schema via the REST API) When would this fail: - Currently if you directly create an example from an LLM run, the outputs are generations with all the extra metadata present. A simple `example_key` and dumping all to the template could make the evaluations unreliable - Doesn't help if you're not using the low level API - If you want to instantiate the evaluator without instantiating your chain or LLM (maybe common for monitoring, for instance) -> could also load from run or run type though What's ugly: - Personally think it's better to load evaluators one by one since passing a config down is pretty confusing. - Lots of testing needs to be added - Inconsistent in that it makes a separate run and example input mapper instead of the original `RunEvaluatorInputMapper`, which maps a run and example to a single input. Example usage running the for an LLM, Chat Model, and Agent. ``` # Test running for the string evaluators evaluator_names = ["qa", "criteria"] model = ChatOpenAI() configured_evaluators = load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer") run_on_dataset(ds_name, model, run_evaluators=configured_evaluators) ``` <details> <summary>Full code with dataset upload</summary> ``` ## Create dataset from langchain.evaluation.run_evaluators.loading import load_run_evaluators_for_model from langchain.evaluation import load_dataset import pandas as pd lcds = load_dataset("llm-math") df = pd.DataFrame(lcds) from uuid import uuid4 from langsmith import Client client = Client() ds_name = "llm-math - " + str(uuid4())[0:8] ds = client.upload_dataframe(df, name=ds_name, input_keys=["question"], output_keys=["answer"]) ## Define the models we'll test over from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.agents import initialize_agent, AgentType from langchain.tools import tool llm = OpenAI(temperature=0) chat_model = ChatOpenAI(temperature=0) @tool def sum(a: float, b: float) -> float: """Add two numbers""" return a + b def construct_agent(): return initialize_agent( llm=chat_model, tools=[sum], agent=AgentType.OPENAI_MULTI_FUNCTIONS, ) agent = construct_agent() # Test running for the string evaluators evaluator_names = ["qa", "criteria"] models = [llm, chat_model, agent] run_evaluators = [] for model in models: run_evaluators.append(load_run_evaluators_for_model(evaluator_names, model=model, reference_key="answer")) # Run on LLM, Chat Model, and Agent from langchain.client.runner_utils import run_on_dataset to_test = [llm, chat_model, construct_agent] for model, configured_evaluators in zip(to_test, run_evaluators): run_on_dataset(ds_name, model, run_evaluators=configured_evaluators, verbose=True) ``` </details> --------- Co-authored-by: Nuno Campos <nuno@boringbits.io>
This commit is contained in:
0
tests/integration_tests/client/__init__.py
Normal file
0
tests/integration_tests/client/__init__.py
Normal file
81
tests/integration_tests/client/test_runner_utils.py
Normal file
81
tests/integration_tests/client/test_runner_utils.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import sys
|
||||
from typing import Iterator
|
||||
from uuid import uuid4
|
||||
|
||||
import pytest
|
||||
from langchainplus_sdk import LangChainPlusClient as Client
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.client.runner_utils import run_on_dataset
|
||||
from langchain.evaluation import EvaluatorType
|
||||
from langchain.evaluation.run_evaluators.loading import load_run_evaluators_for_model
|
||||
from langchain.llms.openai import OpenAI
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
scope="module",
|
||||
)
|
||||
def dataset_name() -> Iterator[str]:
|
||||
import pandas as pd
|
||||
|
||||
client = Client()
|
||||
df = pd.DataFrame(
|
||||
[
|
||||
{"question": "5", "answer": 5.0},
|
||||
{"question": "5 + 3", "answer": 8.0},
|
||||
{"question": "2^3.171", "answer": 9.006708689094099},
|
||||
{"question": " 2 ^3.171 ", "answer": 9.006708689094099},
|
||||
]
|
||||
)
|
||||
|
||||
uid = str(uuid4())[-8:]
|
||||
_dataset_name = f"lcp integration tests - {uid}"
|
||||
client.upload_dataframe(
|
||||
df,
|
||||
name=_dataset_name,
|
||||
input_keys=["question"],
|
||||
output_keys=["answer"],
|
||||
description="Integration test dataset",
|
||||
)
|
||||
yield _dataset_name
|
||||
|
||||
|
||||
def test_chat_model(dataset_name: str) -> None:
|
||||
llm = ChatOpenAI(temperature=0)
|
||||
evaluators = load_run_evaluators_for_model(
|
||||
[EvaluatorType.QA, EvaluatorType.CRITERIA], llm, reference_key="answer"
|
||||
)
|
||||
results = run_on_dataset(
|
||||
dataset_name,
|
||||
llm,
|
||||
run_evaluators=evaluators,
|
||||
)
|
||||
print("CHAT", results, file=sys.stderr)
|
||||
|
||||
|
||||
def test_llm(dataset_name: str) -> None:
|
||||
llm = OpenAI(temperature=0)
|
||||
evaluators = load_run_evaluators_for_model(
|
||||
[EvaluatorType.QA, EvaluatorType.CRITERIA], llm, reference_key="answer"
|
||||
)
|
||||
results = run_on_dataset(
|
||||
dataset_name,
|
||||
llm,
|
||||
run_evaluators=evaluators,
|
||||
)
|
||||
print("LLM", results, file=sys.stderr)
|
||||
|
||||
|
||||
def test_chain(dataset_name: str) -> None:
|
||||
llm = ChatOpenAI(temperature=0)
|
||||
chain = LLMChain.from_string(llm, "The answer to the {question} is: ")
|
||||
evaluators = load_run_evaluators_for_model(
|
||||
[EvaluatorType.QA, EvaluatorType.CRITERIA], chain, reference_key="answer"
|
||||
)
|
||||
results = run_on_dataset(
|
||||
dataset_name,
|
||||
lambda: chain,
|
||||
run_evaluators=evaluators,
|
||||
)
|
||||
print("CHAIN", results, file=sys.stderr)
|
114
tests/unit_tests/evaluation/run_evaluators/test_loading.py
Normal file
114
tests/unit_tests/evaluation/run_evaluators/test_loading.py
Normal file
@@ -0,0 +1,114 @@
|
||||
"""Test the loading function for evalutors."""
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
||||
from langchain.evaluation.loading import load_evaluators
|
||||
from langchain.evaluation.run_evaluators.string_run_evaluator import (
|
||||
StringRunEvaluatorChain,
|
||||
)
|
||||
from langchain.evaluation.schema import StringEvaluator
|
||||
from tests.unit_tests.chains.test_base import FakeChain
|
||||
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
|
||||
|
||||
@pytest.mark.parametrize("evaluator_type", ["qa", "cot_qa", "context_qa", "criteria"])
|
||||
def test_load_string_run_evaluators_with_llm(evaluator_type: str) -> None:
|
||||
"""Test loading evaluators."""
|
||||
fake_llm = FakeLLM(
|
||||
queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True
|
||||
)
|
||||
evaluator = load_evaluators([evaluator_type], llm=fake_llm)[0] # type: ignore
|
||||
if not isinstance(evaluator, StringEvaluator):
|
||||
raise ValueError("Evaluator is not a string evaluator")
|
||||
model = FakeLLM(queries={"text": "Foo output"}, sequential_responses=True)
|
||||
kwargs = {}
|
||||
if evaluator.requires_reference:
|
||||
kwargs["reference_key"] = "generations"
|
||||
run_evaluator = StringRunEvaluatorChain.from_model_and_evaluator(
|
||||
model, evaluator, **kwargs
|
||||
)
|
||||
callback = RunCollectorCallbackHandler()
|
||||
model.predict("Foo input", callbacks=[callback])
|
||||
run = callback.traced_runs[0]
|
||||
example = MagicMock()
|
||||
example.inputs = {}
|
||||
example.outputs = {"generations": "Foo output"}
|
||||
result = run_evaluator._prepare_input({"run": run, "example": example})
|
||||
assert result["input"] == "Foo input"
|
||||
assert result["prediction"] == "Foo output"
|
||||
if evaluator.requires_reference:
|
||||
assert "reference" in result
|
||||
assert result["reference"] == "Foo output"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("evaluator_type", ["qa", "cot_qa", "context_qa", "criteria"])
|
||||
def test_load_string_run_evaluators_with_chat_model(evaluator_type: str) -> None:
|
||||
"""Test loading evaluators."""
|
||||
fake_llm = FakeLLM(
|
||||
queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True
|
||||
)
|
||||
evaluator = load_evaluators([evaluator_type], llm=fake_llm)[0] # type: ignore
|
||||
if not isinstance(evaluator, StringEvaluator):
|
||||
raise ValueError("Evaluator is not a string evaluator")
|
||||
model = FakeChatModel()
|
||||
kwargs = {}
|
||||
if evaluator.requires_reference:
|
||||
kwargs["reference_key"] = "generations"
|
||||
run_evaluator = StringRunEvaluatorChain.from_model_and_evaluator(
|
||||
model, evaluator, **kwargs
|
||||
)
|
||||
callback = RunCollectorCallbackHandler()
|
||||
model.predict("Foo input", callbacks=[callback])
|
||||
run = callback.traced_runs[0]
|
||||
example = MagicMock()
|
||||
example.inputs = {}
|
||||
example.outputs = {"generations": "Another fake response"}
|
||||
result = run_evaluator._prepare_input({"run": run, "example": example})
|
||||
assert result["input"] == "Human: Foo input"
|
||||
assert result["prediction"] == "AI: fake response"
|
||||
if evaluator.requires_reference:
|
||||
assert "reference" in result
|
||||
assert result["reference"] == "Another fake response"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("evaluator_type", ["qa", "cot_qa", "context_qa", "criteria"])
|
||||
def test_load_string_run_evaluators_with_chain(evaluator_type: str) -> None:
|
||||
model = FakeChain(
|
||||
the_input_keys=["an_input", "another_input"],
|
||||
)
|
||||
fake_llm = FakeChatModel()
|
||||
evaluator = load_evaluators([evaluator_type], llm=fake_llm)[0] # type: ignore
|
||||
if not isinstance(evaluator, StringEvaluator):
|
||||
raise ValueError("Evaluator is not a string evaluator")
|
||||
# No input key
|
||||
with pytest.raises(ValueError, match="multiple input keys"):
|
||||
StringRunEvaluatorChain.from_model_and_evaluator(model, evaluator)
|
||||
with pytest.raises(ValueError, match="does not have specified"):
|
||||
StringRunEvaluatorChain.from_model_and_evaluator(
|
||||
model, evaluator, input_key="some_input"
|
||||
)
|
||||
kwargs = {}
|
||||
if evaluator.requires_reference:
|
||||
kwargs["reference_key"] = "label_column"
|
||||
run_evaluator = StringRunEvaluatorChain.from_model_and_evaluator(
|
||||
model, evaluator, input_key="an_input", **kwargs
|
||||
)
|
||||
callback = RunCollectorCallbackHandler()
|
||||
model(
|
||||
{"an_input": "Foo input", "another_input": "Another fake response"},
|
||||
callbacks=[callback],
|
||||
)
|
||||
run = callback.traced_runs[0]
|
||||
example = MagicMock()
|
||||
example.inputs = {}
|
||||
example.outputs = {"label_column": "Another fake response"}
|
||||
result = run_evaluator._prepare_input({"run": run, "example": example})
|
||||
assert result["input"] == "Foo input"
|
||||
assert result["prediction"] == "baz"
|
||||
if evaluator.requires_reference:
|
||||
assert "reference" in result
|
||||
assert result["reference"] == "Another fake response"
|
@@ -3,7 +3,9 @@
|
||||
import pytest
|
||||
|
||||
from langchain.evaluation.loading import EvaluatorType, load_evaluators
|
||||
from langchain.evaluation.schema import StringEvaluator
|
||||
from tests.unit_tests.llms.fake_chat_model import FakeChatModel
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
|
||||
|
||||
@pytest.mark.parametrize("evaluator_type", EvaluatorType)
|
||||
@@ -14,3 +16,16 @@ def test_load_evaluators(evaluator_type: EvaluatorType) -> None:
|
||||
|
||||
# Test as string
|
||||
load_evaluators([evaluator_type.value], llm=fake_llm) # type: ignore
|
||||
|
||||
|
||||
def test_criteria_eval_chain_requires_reference() -> None:
|
||||
"""Test loading evaluators."""
|
||||
fake_llm = FakeLLM(
|
||||
queries={"text": "The meaning of life\nCORRECT"}, sequential_responses=True
|
||||
)
|
||||
evaluator = load_evaluators(
|
||||
[EvaluatorType.CRITERIA], llm=fake_llm, requires_reference=True
|
||||
)[0]
|
||||
if not isinstance(evaluator, StringEvaluator):
|
||||
raise ValueError("Evaluator is not a string evaluator")
|
||||
assert evaluator.requires_reference
|
||||
|
Reference in New Issue
Block a user