mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 03:51:50 +00:00
openai[patch]: support structured output via Responses API (#30265)
Also runs all standard tests using Responses API.
This commit is contained in:
parent
f54f14b747
commit
c74e7b997d
@ -751,11 +751,12 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
kwargs["stream"] = True
|
||||
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
||||
context_manager = self.root_client.responses.create(**payload)
|
||||
original_schema_obj = kwargs.get("response_format")
|
||||
|
||||
with context_manager as response:
|
||||
for chunk in response:
|
||||
if generation_chunk := _convert_responses_chunk_to_generation_chunk(
|
||||
chunk
|
||||
chunk, schema=original_schema_obj
|
||||
):
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(
|
||||
@ -773,11 +774,12 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
kwargs["stream"] = True
|
||||
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
||||
context_manager = await self.root_async_client.responses.create(**payload)
|
||||
original_schema_obj = kwargs.get("response_format")
|
||||
|
||||
async with context_manager as response:
|
||||
async for chunk in response:
|
||||
if generation_chunk := _convert_responses_chunk_to_generation_chunk(
|
||||
chunk
|
||||
chunk, schema=original_schema_obj
|
||||
):
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(
|
||||
@ -880,8 +882,14 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
response = raw_response.parse()
|
||||
generation_info = {"headers": dict(raw_response.headers)}
|
||||
elif self._use_responses_api(payload):
|
||||
response = self.root_client.responses.create(**payload)
|
||||
return _construct_lc_result_from_responses_api(response)
|
||||
original_schema_obj = kwargs.get("response_format")
|
||||
if original_schema_obj and _is_pydantic_class(original_schema_obj):
|
||||
response = self.root_client.responses.parse(**payload)
|
||||
else:
|
||||
response = self.root_client.responses.create(**payload)
|
||||
return _construct_lc_result_from_responses_api(
|
||||
response, schema=original_schema_obj
|
||||
)
|
||||
else:
|
||||
response = self.client.create(**payload)
|
||||
return self._create_chat_result(response, generation_info)
|
||||
@ -1062,8 +1070,15 @@ class BaseChatOpenAI(BaseChatModel):
|
||||
response = raw_response.parse()
|
||||
generation_info = {"headers": dict(raw_response.headers)}
|
||||
elif self._use_responses_api(payload):
|
||||
response = await self.root_async_client.responses.create(**payload)
|
||||
return _construct_lc_result_from_responses_api(response)
|
||||
original_schema_obj = kwargs.get("response_format")
|
||||
if original_schema_obj and _is_pydantic_class(original_schema_obj):
|
||||
response = await self.root_async_client.responses.parse(**payload)
|
||||
else:
|
||||
response = await self.root_async_client.responses.create(**payload)
|
||||
return _construct_lc_result_from_responses_api(
|
||||
response, schema=original_schema_obj
|
||||
)
|
||||
|
||||
else:
|
||||
response = await self.async_client.create(**payload)
|
||||
return await run_in_executor(
|
||||
@ -2833,23 +2848,45 @@ def _construct_responses_api_payload(
|
||||
if tool_choice := payload.pop("tool_choice", None):
|
||||
# chat api: {"type": "function", "function": {"name": "..."}}
|
||||
# responses api: {"type": "function", "name": "..."}
|
||||
if tool_choice["type"] == "function" and "function" in tool_choice:
|
||||
if (
|
||||
isinstance(tool_choice, dict)
|
||||
and tool_choice["type"] == "function"
|
||||
and "function" in tool_choice
|
||||
):
|
||||
payload["tool_choice"] = {"type": "function", **tool_choice["function"]}
|
||||
else:
|
||||
payload["tool_choice"] = tool_choice
|
||||
if response_format := payload.pop("response_format", None):
|
||||
|
||||
# Structured output
|
||||
if schema := payload.pop("response_format", None):
|
||||
if payload.get("text"):
|
||||
text = payload["text"]
|
||||
raise ValueError(
|
||||
"Can specify at most one of 'response_format' or 'text', received both:"
|
||||
f"\n{response_format=}\n{text=}"
|
||||
f"\n{schema=}\n{text=}"
|
||||
)
|
||||
# chat api: {"type": "json_schema, "json_schema": {"schema": {...}, "name": "...", "description": "...", "strict": ...}} # noqa: E501
|
||||
# responses api: {"type": "json_schema, "schema": {...}, "name": "...", "description": "...", "strict": ...} # noqa: E501
|
||||
if response_format["type"] == "json_schema":
|
||||
payload["text"] = {"type": "json_schema", **response_format["json_schema"]}
|
||||
|
||||
# For pydantic + non-streaming case, we use responses.parse.
|
||||
# Otherwise, we use responses.create.
|
||||
if not payload.get("stream") and _is_pydantic_class(schema):
|
||||
payload["text_format"] = schema
|
||||
else:
|
||||
payload["text"] = response_format
|
||||
if _is_pydantic_class(schema):
|
||||
schema_dict = schema.model_json_schema()
|
||||
else:
|
||||
schema_dict = schema
|
||||
if schema_dict == {"type": "json_object"}: # JSON mode
|
||||
payload["text"] = {"format": {"type": "json_object"}}
|
||||
elif (
|
||||
(response_format := _convert_to_openai_response_format(schema_dict))
|
||||
and (isinstance(response_format, dict))
|
||||
and (response_format["type"] == "json_schema")
|
||||
):
|
||||
payload["text"] = {
|
||||
"format": {"type": "json_schema", **response_format["json_schema"]}
|
||||
}
|
||||
else:
|
||||
pass
|
||||
return payload
|
||||
|
||||
|
||||
@ -2857,6 +2894,9 @@ def _construct_responses_api_input(messages: Sequence[BaseMessage]) -> list:
|
||||
input_ = []
|
||||
for lc_msg in messages:
|
||||
msg = _convert_message_to_dict(lc_msg)
|
||||
# "name" parameter unsupported
|
||||
if "name" in msg:
|
||||
msg.pop("name")
|
||||
if msg["role"] == "tool":
|
||||
tool_output = msg["content"]
|
||||
if not isinstance(tool_output, str):
|
||||
@ -2872,17 +2912,20 @@ def _construct_responses_api_input(messages: Sequence[BaseMessage]) -> list:
|
||||
if tool_calls := msg.pop("tool_calls", None):
|
||||
# TODO: should you be able to preserve the function call object id on
|
||||
# the langchain tool calls themselves?
|
||||
if not lc_msg.additional_kwargs.get(_FUNCTION_CALL_IDS_MAP_KEY):
|
||||
raise ValueError("")
|
||||
function_call_ids = lc_msg.additional_kwargs[_FUNCTION_CALL_IDS_MAP_KEY]
|
||||
function_call_ids = lc_msg.additional_kwargs.get(
|
||||
_FUNCTION_CALL_IDS_MAP_KEY
|
||||
)
|
||||
for tool_call in tool_calls:
|
||||
function_call = {
|
||||
"type": "function_call",
|
||||
"name": tool_call["function"]["name"],
|
||||
"arguments": tool_call["function"]["arguments"],
|
||||
"call_id": tool_call["id"],
|
||||
"id": function_call_ids[tool_call["id"]],
|
||||
}
|
||||
if function_call_ids is not None and (
|
||||
_id := function_call_ids.get(tool_call["id"])
|
||||
):
|
||||
function_call["id"] = _id
|
||||
function_calls.append(function_call)
|
||||
|
||||
msg["content"] = msg.get("content") or []
|
||||
@ -2949,7 +2992,9 @@ def _construct_responses_api_input(messages: Sequence[BaseMessage]) -> list:
|
||||
return input_
|
||||
|
||||
|
||||
def _construct_lc_result_from_responses_api(response: Response) -> ChatResult:
|
||||
def _construct_lc_result_from_responses_api(
|
||||
response: Response, schema: Optional[Type[_BM]] = None
|
||||
) -> ChatResult:
|
||||
"""Construct ChatResponse from OpenAI Response API response."""
|
||||
if response.error:
|
||||
raise ValueError(response.error)
|
||||
@ -2994,6 +3039,8 @@ def _construct_lc_result_from_responses_api(response: Response) -> ChatResult:
|
||||
],
|
||||
}
|
||||
content_blocks.append(block)
|
||||
if hasattr(content, "parsed"):
|
||||
additional_kwargs["parsed"] = content.parsed
|
||||
if content.type == "refusal":
|
||||
additional_kwargs["refusal"] = content.refusal
|
||||
msg_id = output.id
|
||||
@ -3034,6 +3081,35 @@ def _construct_lc_result_from_responses_api(response: Response) -> ChatResult:
|
||||
additional_kwargs["tool_outputs"].append(tool_output)
|
||||
else:
|
||||
additional_kwargs["tool_outputs"] = [tool_output]
|
||||
# Workaround for parsing structured output in the streaming case.
|
||||
# from openai import OpenAI
|
||||
# from pydantic import BaseModel
|
||||
|
||||
# class Foo(BaseModel):
|
||||
# response: str
|
||||
|
||||
# client = OpenAI()
|
||||
|
||||
# client.responses.parse(
|
||||
# model="gpt-4o-mini",
|
||||
# input=[{"content": "how are ya", "role": "user"}],
|
||||
# text_format=Foo,
|
||||
# stream=True, # <-- errors
|
||||
# )
|
||||
if (
|
||||
schema is not None
|
||||
and "parsed" not in additional_kwargs
|
||||
and response.text
|
||||
and (text_config := response.text.model_dump())
|
||||
and (format_ := text_config.get("format", {}))
|
||||
and (format_.get("type") == "json_schema")
|
||||
):
|
||||
parsed_dict = json.loads(response.output_text)
|
||||
if schema and _is_pydantic_class(schema):
|
||||
parsed = schema(**parsed_dict)
|
||||
else:
|
||||
parsed = parsed_dict
|
||||
additional_kwargs["parsed"] = parsed
|
||||
message = AIMessage(
|
||||
content=content_blocks,
|
||||
id=msg_id,
|
||||
@ -3047,7 +3123,7 @@ def _construct_lc_result_from_responses_api(response: Response) -> ChatResult:
|
||||
|
||||
|
||||
def _convert_responses_chunk_to_generation_chunk(
|
||||
chunk: Any,
|
||||
chunk: Any, schema: Optional[Type[_BM]] = None
|
||||
) -> Optional[ChatGenerationChunk]:
|
||||
content = []
|
||||
tool_call_chunks: list = []
|
||||
@ -3074,11 +3150,13 @@ def _convert_responses_chunk_to_generation_chunk(
|
||||
msg = cast(
|
||||
AIMessage,
|
||||
(
|
||||
_construct_lc_result_from_responses_api(chunk.response)
|
||||
_construct_lc_result_from_responses_api(chunk.response, schema=schema)
|
||||
.generations[0]
|
||||
.message
|
||||
),
|
||||
)
|
||||
if parsed := msg.additional_kwargs.get("parsed"):
|
||||
additional_kwargs["parsed"] = parsed
|
||||
usage_metadata = msg.usage_metadata
|
||||
response_metadata = {
|
||||
k: v for k, v in msg.response_metadata.items() if k != "id"
|
||||
|
@ -1,5 +1,6 @@
|
||||
"""Test Responses API usage."""
|
||||
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Optional, cast
|
||||
|
||||
@ -10,9 +11,13 @@ from langchain_core.messages import (
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
MODEL_NAME = "gpt-4o-mini"
|
||||
|
||||
|
||||
def _check_response(response: Optional[BaseMessage]) -> None:
|
||||
assert isinstance(response, AIMessage)
|
||||
@ -48,7 +53,7 @@ def _check_response(response: Optional[BaseMessage]) -> None:
|
||||
|
||||
|
||||
def test_web_search() -> None:
|
||||
llm = ChatOpenAI(model="gpt-4o-mini")
|
||||
llm = ChatOpenAI(model=MODEL_NAME)
|
||||
first_response = llm.invoke(
|
||||
"What was a positive news story from today?",
|
||||
tools=[{"type": "web_search_preview"}],
|
||||
@ -94,7 +99,7 @@ def test_web_search() -> None:
|
||||
|
||||
|
||||
async def test_web_search_async() -> None:
|
||||
llm = ChatOpenAI(model="gpt-4o-mini")
|
||||
llm = ChatOpenAI(model=MODEL_NAME)
|
||||
response = await llm.ainvoke(
|
||||
"What was a positive news story from today?",
|
||||
tools=[{"type": "web_search_preview"}],
|
||||
@ -119,7 +124,7 @@ def test_function_calling() -> None:
|
||||
"""return x * y"""
|
||||
return x * y
|
||||
|
||||
llm = ChatOpenAI(model="gpt-4o-mini")
|
||||
llm = ChatOpenAI(model=MODEL_NAME)
|
||||
bound_llm = llm.bind_tools([multiply, {"type": "web_search_preview"}])
|
||||
ai_msg = cast(AIMessage, bound_llm.invoke("whats 5 * 4"))
|
||||
assert len(ai_msg.tool_calls) == 1
|
||||
@ -138,8 +143,110 @@ def test_function_calling() -> None:
|
||||
_check_response(response)
|
||||
|
||||
|
||||
class Foo(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
class FooDict(TypedDict):
|
||||
response: str
|
||||
|
||||
|
||||
def test_parsed_pydantic_schema() -> None:
|
||||
llm = ChatOpenAI(model=MODEL_NAME, use_responses_api=True)
|
||||
response = llm.invoke("how are ya", response_format=Foo)
|
||||
parsed = Foo(**json.loads(response.text()))
|
||||
assert parsed == response.additional_kwargs["parsed"]
|
||||
assert parsed.response
|
||||
|
||||
# Test stream
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
for chunk in llm.stream("how are ya", response_format=Foo):
|
||||
assert isinstance(chunk, AIMessageChunk)
|
||||
full = chunk if full is None else full + chunk
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
parsed = Foo(**json.loads(full.text()))
|
||||
assert parsed == full.additional_kwargs["parsed"]
|
||||
assert parsed.response
|
||||
|
||||
|
||||
async def test_parsed_pydantic_schema_async() -> None:
|
||||
llm = ChatOpenAI(model=MODEL_NAME, use_responses_api=True)
|
||||
response = await llm.ainvoke("how are ya", response_format=Foo)
|
||||
parsed = Foo(**json.loads(response.text()))
|
||||
assert parsed == response.additional_kwargs["parsed"]
|
||||
assert parsed.response
|
||||
|
||||
# Test stream
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
async for chunk in llm.astream("how are ya", response_format=Foo):
|
||||
assert isinstance(chunk, AIMessageChunk)
|
||||
full = chunk if full is None else full + chunk
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
parsed = Foo(**json.loads(full.text()))
|
||||
assert parsed == full.additional_kwargs["parsed"]
|
||||
assert parsed.response
|
||||
|
||||
|
||||
@pytest.mark.parametrize("schema", [Foo.model_json_schema(), FooDict])
|
||||
def test_parsed_dict_schema(schema: Any) -> None:
|
||||
llm = ChatOpenAI(model=MODEL_NAME, use_responses_api=True)
|
||||
response = llm.invoke("how are ya", response_format=schema)
|
||||
parsed = json.loads(response.text())
|
||||
assert parsed == response.additional_kwargs["parsed"]
|
||||
assert parsed["response"] and isinstance(parsed["response"], str)
|
||||
|
||||
# Test stream
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
for chunk in llm.stream("how are ya", response_format=schema):
|
||||
assert isinstance(chunk, AIMessageChunk)
|
||||
full = chunk if full is None else full + chunk
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
parsed = json.loads(full.text())
|
||||
assert parsed == full.additional_kwargs["parsed"]
|
||||
assert parsed["response"] and isinstance(parsed["response"], str)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("schema", [Foo.model_json_schema(), FooDict])
|
||||
async def test_parsed_dict_schema_async(schema: Any) -> None:
|
||||
llm = ChatOpenAI(model=MODEL_NAME, use_responses_api=True)
|
||||
response = await llm.ainvoke("how are ya", response_format=schema)
|
||||
parsed = json.loads(response.text())
|
||||
assert parsed == response.additional_kwargs["parsed"]
|
||||
assert parsed["response"] and isinstance(parsed["response"], str)
|
||||
|
||||
# Test stream
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
async for chunk in llm.astream("how are ya", response_format=schema):
|
||||
assert isinstance(chunk, AIMessageChunk)
|
||||
full = chunk if full is None else full + chunk
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
parsed = json.loads(full.text())
|
||||
assert parsed == full.additional_kwargs["parsed"]
|
||||
assert parsed["response"] and isinstance(parsed["response"], str)
|
||||
|
||||
|
||||
def test_function_calling_and_structured_output() -> None:
|
||||
def multiply(x: int, y: int) -> int:
|
||||
"""return x * y"""
|
||||
return x * y
|
||||
|
||||
llm = ChatOpenAI(model=MODEL_NAME)
|
||||
bound_llm = llm.bind_tools([multiply], response_format=Foo, strict=True)
|
||||
# Test structured output
|
||||
response = llm.invoke("how are ya", response_format=Foo)
|
||||
parsed = Foo(**json.loads(response.text()))
|
||||
assert parsed == response.additional_kwargs["parsed"]
|
||||
assert parsed.response
|
||||
|
||||
# Test function calling
|
||||
ai_msg = cast(AIMessage, bound_llm.invoke("whats 5 * 4"))
|
||||
assert len(ai_msg.tool_calls) == 1
|
||||
assert ai_msg.tool_calls[0]["name"] == "multiply"
|
||||
assert set(ai_msg.tool_calls[0]["args"]) == {"x", "y"}
|
||||
|
||||
|
||||
def test_stateful_api() -> None:
|
||||
llm = ChatOpenAI(model="gpt-4o-mini", use_responses_api=True)
|
||||
llm = ChatOpenAI(model=MODEL_NAME, use_responses_api=True)
|
||||
response = llm.invoke("how are you, my name is Bobo")
|
||||
assert "id" in response.response_metadata
|
||||
|
||||
@ -152,7 +259,7 @@ def test_stateful_api() -> None:
|
||||
|
||||
def test_file_search() -> None:
|
||||
pytest.skip() # TODO: set up infra
|
||||
llm = ChatOpenAI(model="gpt-4o-mini")
|
||||
llm = ChatOpenAI(model=MODEL_NAME)
|
||||
tool = {
|
||||
"type": "file_search",
|
||||
"vector_store_ids": [os.environ["OPENAI_VECTOR_STORE_ID"]],
|
||||
|
@ -0,0 +1,23 @@
|
||||
"""Standard LangChain interface tests for Responses API"""
|
||||
|
||||
from typing import Type
|
||||
|
||||
import pytest
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
from tests.integration_tests.chat_models.test_base_standard import TestOpenAIStandard
|
||||
|
||||
|
||||
class TestOpenAIResponses(TestOpenAIStandard):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[BaseChatModel]:
|
||||
return ChatOpenAI
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "gpt-4o-mini", "use_responses_api": True}
|
||||
|
||||
@pytest.mark.xfail(reason="Unsupported.")
|
||||
def test_stop_sequence(self, model: BaseChatModel) -> None:
|
||||
super().test_stop_sequence(model)
|
@ -0,0 +1,31 @@
|
||||
# serializer version: 1
|
||||
# name: TestOpenAIResponses.test_serdes[serialized]
|
||||
dict({
|
||||
'id': list([
|
||||
'langchain',
|
||||
'chat_models',
|
||||
'openai',
|
||||
'ChatOpenAI',
|
||||
]),
|
||||
'kwargs': dict({
|
||||
'max_retries': 2,
|
||||
'max_tokens': 100,
|
||||
'model_name': 'gpt-3.5-turbo',
|
||||
'openai_api_key': dict({
|
||||
'id': list([
|
||||
'OPENAI_API_KEY',
|
||||
]),
|
||||
'lc': 1,
|
||||
'type': 'secret',
|
||||
}),
|
||||
'request_timeout': 60.0,
|
||||
'stop': list([
|
||||
]),
|
||||
'temperature': 0.0,
|
||||
'use_responses_api': True,
|
||||
}),
|
||||
'lc': 1,
|
||||
'name': 'ChatOpenAI',
|
||||
'type': 'constructor',
|
||||
})
|
||||
# ---
|
@ -1569,23 +1569,6 @@ def test__construct_responses_api_input_ai_message_with_tool_calls_and_content()
|
||||
assert result[1]["id"] == "func_456"
|
||||
|
||||
|
||||
def test__construct_responses_api_input_missing_function_call_ids() -> None:
|
||||
"""Test AI messages with tool calls but missing function call IDs raise an error."""
|
||||
tool_calls = [
|
||||
{
|
||||
"id": "call_123",
|
||||
"name": "get_weather",
|
||||
"args": {"location": "San Francisco"},
|
||||
"type": "tool_call",
|
||||
}
|
||||
]
|
||||
|
||||
ai_message = AIMessage(content="", tool_calls=tool_calls)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
_construct_responses_api_input([ai_message])
|
||||
|
||||
|
||||
def test__construct_responses_api_input_tool_message_conversion() -> None:
|
||||
"""Test that tool messages are properly converted to function_call_output."""
|
||||
messages = [
|
||||
|
@ -0,0 +1,36 @@
|
||||
"""Standard LangChain interface tests"""
|
||||
|
||||
from typing import Tuple, Type
|
||||
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
|
||||
class TestOpenAIResponses(ChatModelUnitTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[BaseChatModel]:
|
||||
return ChatOpenAI
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"use_responses_api": True}
|
||||
|
||||
@property
|
||||
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
|
||||
return (
|
||||
{
|
||||
"OPENAI_API_KEY": "api_key",
|
||||
"OPENAI_ORG_ID": "org_id",
|
||||
"OPENAI_API_BASE": "api_base",
|
||||
"OPENAI_PROXY": "https://proxy.com",
|
||||
},
|
||||
{},
|
||||
{
|
||||
"openai_api_key": "api_key",
|
||||
"openai_organization": "org_id",
|
||||
"openai_api_base": "api_base",
|
||||
"openai_proxy": "https://proxy.com",
|
||||
},
|
||||
)
|
@ -416,7 +416,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result = model.invoke("Hello")
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
async def test_ainvoke(self, model: BaseChatModel) -> None:
|
||||
@ -448,7 +448,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result = await model.ainvoke("Hello")
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
def test_stream(self, model: BaseChatModel) -> None:
|
||||
@ -542,7 +542,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
for result in batch_results:
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
async def test_abatch(self, model: BaseChatModel) -> None:
|
||||
@ -571,7 +571,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
for result in batch_results:
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
def test_conversation(self, model: BaseChatModel) -> None:
|
||||
@ -600,7 +600,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result = model.invoke(messages)
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
def test_double_messages_conversation(self, model: BaseChatModel) -> None:
|
||||
@ -638,7 +638,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result = model.invoke(messages)
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
def test_usage_metadata(self, model: BaseChatModel) -> None:
|
||||
@ -2136,7 +2136,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result = model.invoke([HumanMessage("hello", name="example_user")])
|
||||
assert result is not None
|
||||
assert isinstance(result, AIMessage)
|
||||
assert isinstance(result.content, str)
|
||||
assert isinstance(result.text(), str)
|
||||
assert len(result.content) > 0
|
||||
|
||||
def test_agent_loop(self, model: BaseChatModel) -> None:
|
||||
|
Loading…
Reference in New Issue
Block a user