mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-30 03:28:40 +00:00
conditional imports (#11017)
This commit is contained in:
parent
0625ab7a9e
commit
c87e9fb2ce
@ -1,57 +1,12 @@
|
||||
# ruff: noqa: E402
|
||||
"""Main entrypoint into package."""
|
||||
import warnings
|
||||
from importlib import metadata
|
||||
from typing import Optional
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain.schema import BaseCache
|
||||
|
||||
from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain
|
||||
from langchain.chains import (
|
||||
ConversationChain,
|
||||
LLMBashChain,
|
||||
LLMChain,
|
||||
LLMCheckerChain,
|
||||
LLMMathChain,
|
||||
QAWithSourcesChain,
|
||||
VectorDBQA,
|
||||
VectorDBQAWithSourcesChain,
|
||||
)
|
||||
from langchain.docstore import InMemoryDocstore, Wikipedia
|
||||
from langchain.llms import (
|
||||
Anthropic,
|
||||
Banana,
|
||||
CerebriumAI,
|
||||
Cohere,
|
||||
ForefrontAI,
|
||||
GooseAI,
|
||||
HuggingFaceHub,
|
||||
HuggingFaceTextGenInference,
|
||||
LlamaCpp,
|
||||
Modal,
|
||||
OpenAI,
|
||||
Petals,
|
||||
PipelineAI,
|
||||
SagemakerEndpoint,
|
||||
StochasticAI,
|
||||
Writer,
|
||||
)
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.prompts import (
|
||||
FewShotPromptTemplate,
|
||||
Prompt,
|
||||
PromptTemplate,
|
||||
)
|
||||
from langchain.schema.cache import BaseCache
|
||||
from langchain.schema.prompt_template import BasePromptTemplate
|
||||
from langchain.utilities.arxiv import ArxivAPIWrapper
|
||||
from langchain.utilities.golden_query import GoldenQueryAPIWrapper
|
||||
from langchain.utilities.google_search import GoogleSearchAPIWrapper
|
||||
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
|
||||
from langchain.utilities.powerbi import PowerBIDataset
|
||||
from langchain.utilities.searx_search import SearxSearchWrapper
|
||||
from langchain.utilities.serpapi import SerpAPIWrapper
|
||||
from langchain.utilities.sql_database import SQLDatabase
|
||||
from langchain.utilities.wikipedia import WikipediaAPIWrapper
|
||||
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
|
||||
from langchain.vectorstores import FAISS, ElasticVectorSearch
|
||||
|
||||
try:
|
||||
__version__ = metadata.version(__package__)
|
||||
@ -62,10 +17,200 @@ del metadata # optional, avoids polluting the results of dir(__package__)
|
||||
|
||||
verbose: bool = False
|
||||
debug: bool = False
|
||||
llm_cache: Optional[BaseCache] = None
|
||||
llm_cache: Optional["BaseCache"] = None
|
||||
|
||||
# For backwards compatibility
|
||||
SerpAPIChain = SerpAPIWrapper
|
||||
|
||||
def __getattr__(name: str) -> Any:
|
||||
warnings.warn(
|
||||
f"Importing {name} from langchain root module is no longer supported."
|
||||
)
|
||||
if name == "MRKLChain":
|
||||
from langchain.agents import MRKLChain
|
||||
|
||||
return MRKLChain
|
||||
elif name == "ReActChain":
|
||||
from langchain.agents import ReActChain
|
||||
|
||||
return ReActChain
|
||||
elif name == "SelfAskWithSearchChain":
|
||||
from langchain.agents import SelfAskWithSearchChain
|
||||
|
||||
return SelfAskWithSearchChain
|
||||
elif name == "ConversationChain":
|
||||
from langchain.chains import ConversationChain
|
||||
|
||||
return ConversationChain
|
||||
elif name == "LLMBashChain":
|
||||
from langchain.chains import LLMBashChain
|
||||
|
||||
return LLMBashChain
|
||||
elif name == "LLMChain":
|
||||
from langchain.chains import LLMChain
|
||||
|
||||
return LLMChain
|
||||
elif name == "LLMCheckerChain":
|
||||
from langchain.chains import LLMCheckerChain
|
||||
|
||||
return LLMCheckerChain
|
||||
elif name == "LLMMathChain":
|
||||
from langchain.chains import LLMMathChain
|
||||
|
||||
return LLMMathChain
|
||||
elif name == "QAWithSourcesChain":
|
||||
from langchain.chains import QAWithSourcesChain
|
||||
|
||||
return QAWithSourcesChain
|
||||
elif name == "VectorDBQA":
|
||||
from langchain.chains import VectorDBQA
|
||||
|
||||
return VectorDBQA
|
||||
elif name == "VectorDBQAWithSourcesChain":
|
||||
from langchain.chains import VectorDBQAWithSourcesChain
|
||||
|
||||
return VectorDBQAWithSourcesChain
|
||||
elif name == "InMemoryDocstore":
|
||||
from langchain.docstore import InMemoryDocstore
|
||||
|
||||
return InMemoryDocstore
|
||||
elif name == "Wikipedia":
|
||||
from langchain.docstore import Wikipedia
|
||||
|
||||
return Wikipedia
|
||||
elif name == "Anthropic":
|
||||
from langchain.llms import Anthropic
|
||||
|
||||
return Anthropic
|
||||
elif name == "Banana":
|
||||
from langchain.llms import Banana
|
||||
|
||||
return Banana
|
||||
elif name == "CerebriumAI":
|
||||
from langchain.llms import CerebriumAI
|
||||
|
||||
return CerebriumAI
|
||||
elif name == "Cohere":
|
||||
from langchain.llms import Cohere
|
||||
|
||||
return Cohere
|
||||
elif name == "ForefrontAI":
|
||||
from langchain.llms import ForefrontAI
|
||||
|
||||
return ForefrontAI
|
||||
elif name == "GooseAI":
|
||||
from langchain.llms import GooseAI
|
||||
|
||||
return GooseAI
|
||||
elif name == "HuggingFaceHub":
|
||||
from langchain.llms import HuggingFaceHub
|
||||
|
||||
return HuggingFaceHub
|
||||
elif name == "HuggingFaceTextGenInference":
|
||||
from langchain.llms import HuggingFaceTextGenInference
|
||||
|
||||
return HuggingFaceTextGenInference
|
||||
elif name == "LlamaCpp":
|
||||
from langchain.llms import LlamaCpp
|
||||
|
||||
return LlamaCpp
|
||||
elif name == "Modal":
|
||||
from langchain.llms import Modal
|
||||
|
||||
return Modal
|
||||
elif name == "OpenAI":
|
||||
from langchain.llms import OpenAI
|
||||
|
||||
return OpenAI
|
||||
elif name == "Petals":
|
||||
from langchain.llms import Petals
|
||||
|
||||
return Petals
|
||||
elif name == "PipelineAI":
|
||||
from langchain.llms import PipelineAI
|
||||
|
||||
return PipelineAI
|
||||
elif name == "SagemakerEndpoint":
|
||||
from langchain.llms import SagemakerEndpoint
|
||||
|
||||
return SagemakerEndpoint
|
||||
elif name == "StochasticAI":
|
||||
from langchain.llms import StochasticAI
|
||||
|
||||
return StochasticAI
|
||||
elif name == "Writer":
|
||||
from langchain.llms import Writer
|
||||
|
||||
return Writer
|
||||
elif name == "HuggingFacePipeline":
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
|
||||
return HuggingFacePipeline
|
||||
elif name == "FewShotPromptTemplate":
|
||||
from langchain.prompts import FewShotPromptTemplate
|
||||
|
||||
return FewShotPromptTemplate
|
||||
elif name == "Prompt":
|
||||
from langchain.prompts import Prompt
|
||||
|
||||
return Prompt
|
||||
elif name == "PromptTemplate":
|
||||
from langchain.prompts import PromptTemplate
|
||||
|
||||
return PromptTemplate
|
||||
elif name == "BasePromptTemplate":
|
||||
from langchain.schema.prompt_template import BasePromptTemplate
|
||||
|
||||
return BasePromptTemplate
|
||||
elif name == "ArxivAPIWrapper":
|
||||
from langchain.utilities import ArxivAPIWrapper
|
||||
|
||||
return ArxivAPIWrapper
|
||||
elif name == "GoldenQueryAPIWrapper":
|
||||
from langchain.utilities import GoldenQueryAPIWrapper
|
||||
|
||||
return GoldenQueryAPIWrapper
|
||||
elif name == "GoogleSearchAPIWrapper":
|
||||
from langchain.utilities import GoogleSearchAPIWrapper
|
||||
|
||||
return GoogleSearchAPIWrapper
|
||||
elif name == "GoogleSerperAPIWrapper":
|
||||
from langchain.utilities import GoogleSerperAPIWrapper
|
||||
|
||||
return GoogleSerperAPIWrapper
|
||||
elif name == "PowerBIDataset":
|
||||
from langchain.utilities import PowerBIDataset
|
||||
|
||||
return PowerBIDataset
|
||||
elif name == "SearxSearchWrapper":
|
||||
from langchain.utilities import SearxSearchWrapper
|
||||
|
||||
return SearxSearchWrapper
|
||||
elif name == "WikipediaAPIWrapper":
|
||||
from langchain.utilities import WikipediaAPIWrapper
|
||||
|
||||
return WikipediaAPIWrapper
|
||||
elif name == "WolframAlphaAPIWrapper":
|
||||
from langchain.utilities import WolframAlphaAPIWrapper
|
||||
|
||||
return WolframAlphaAPIWrapper
|
||||
elif name == "SQLDatabase":
|
||||
from langchain.utilities import SQLDatabase
|
||||
|
||||
return SQLDatabase
|
||||
elif name == "FAISS":
|
||||
from langchain.vectorstores import FAISS
|
||||
|
||||
return FAISS
|
||||
elif name == "ElasticVectorSearch":
|
||||
from langchain.vectorstores import ElasticVectorSearch
|
||||
|
||||
return ElasticVectorSearch
|
||||
# For backwards compatibility
|
||||
elif name == "SerpAPIChain":
|
||||
from langchain.utilities import SerpAPIWrapper
|
||||
|
||||
return SerpAPIWrapper
|
||||
else:
|
||||
raise AttributeError(f"Could not find: {name}")
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
@ -1,12 +1,14 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TypeVar
|
||||
from typing import TYPE_CHECKING, TypeVar
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
|
||||
from langchain.schema import BaseOutputParser, BasePromptTemplate, OutputParserException
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
@ -37,6 +39,8 @@ class OutputFixingParser(BaseOutputParser[T]):
|
||||
Returns:
|
||||
OutputFixingParser
|
||||
"""
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
chain = LLMChain(llm=llm, prompt=prompt)
|
||||
return cls(parser=parser, retry_chain=chain)
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TypeVar
|
||||
from typing import TYPE_CHECKING, TypeVar
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import (
|
||||
BaseOutputParser,
|
||||
@ -12,6 +11,9 @@ from langchain.schema import (
|
||||
)
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
NAIVE_COMPLETION_RETRY = """Prompt:
|
||||
{prompt}
|
||||
Completion:
|
||||
@ -56,6 +58,8 @@ class RetryOutputParser(BaseOutputParser[T]):
|
||||
parser: BaseOutputParser[T],
|
||||
prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT,
|
||||
) -> RetryOutputParser[T]:
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
chain = LLMChain(llm=llm, prompt=prompt)
|
||||
return cls(parser=parser, retry_chain=chain)
|
||||
|
||||
@ -142,6 +146,8 @@ class RetryWithErrorOutputParser(BaseOutputParser[T]):
|
||||
Returns:
|
||||
A RetryWithErrorOutputParser.
|
||||
"""
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
chain = LLMChain(llm=llm, prompt=prompt)
|
||||
return cls(parser=parser, retry_chain=chain)
|
||||
|
||||
|
@ -4,7 +4,6 @@ import json
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForToolRun
|
||||
from langchain.chains import RetrievalQA, RetrievalQAWithSourcesChain
|
||||
from langchain.llms.openai import OpenAI
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
@ -48,6 +47,8 @@ class VectorStoreQATool(BaseVectorStoreTool, BaseTool):
|
||||
run_manager: Optional[CallbackManagerForToolRun] = None,
|
||||
) -> str:
|
||||
"""Use the tool."""
|
||||
from langchain.chains.retrieval_qa.base import RetrievalQA
|
||||
|
||||
chain = RetrievalQA.from_chain_type(
|
||||
self.llm, retriever=self.vectorstore.as_retriever()
|
||||
)
|
||||
@ -78,6 +79,11 @@ class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool):
|
||||
run_manager: Optional[CallbackManagerForToolRun] = None,
|
||||
) -> str:
|
||||
"""Use the tool."""
|
||||
|
||||
from langchain.chains.qa_with_sources.retrieval import (
|
||||
RetrievalQAWithSourcesChain,
|
||||
)
|
||||
|
||||
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
||||
self.llm, retriever=self.vectorstore.as_retriever()
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user