mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-04 04:07:54 +00:00
community[patch]: Modify LLMs/Anyscale work with OpenAI API v1 (#14206)
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --> - **Description:** 1. Modify LLMs/Anyscale to work with OAI v1 2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale 3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name convention (reverted) --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
24c0bab57b
commit
c9999557bf
@ -23,7 +23,6 @@ if TYPE_CHECKING:
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1"
|
||||
DEFAULT_MODEL = "meta-llama/Llama-2-7b-chat-hf"
|
||||
|
||||
@ -60,7 +59,7 @@ class ChatAnyscale(ChatOpenAI):
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
return False
|
||||
|
||||
anyscale_api_key: SecretStr
|
||||
anyscale_api_key: SecretStr = Field(default=None)
|
||||
"""AnyScale Endpoints API keys."""
|
||||
model_name: str = Field(default=DEFAULT_MODEL, alias="model")
|
||||
"""Model name to use."""
|
||||
@ -102,14 +101,9 @@ class ChatAnyscale(ChatOpenAI):
|
||||
|
||||
return {model["id"] for model in models_response.json()["data"]}
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment_override(cls, values: dict) -> dict:
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: dict) -> dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values,
|
||||
"anyscale_api_key",
|
||||
"ANYSCALE_API_KEY",
|
||||
)
|
||||
values["anyscale_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(
|
||||
values,
|
||||
@ -117,7 +111,7 @@ class ChatAnyscale(ChatOpenAI):
|
||||
"ANYSCALE_API_KEY",
|
||||
)
|
||||
)
|
||||
values["openai_api_base"] = get_from_dict_or_env(
|
||||
values["anyscale_api_base"] = get_from_dict_or_env(
|
||||
values,
|
||||
"anyscale_api_base",
|
||||
"ANYSCALE_API_BASE",
|
||||
@ -140,8 +134,8 @@ class ChatAnyscale(ChatOpenAI):
|
||||
try:
|
||||
if is_openai_v1():
|
||||
client_params = {
|
||||
"api_key": values["openai_api_key"],
|
||||
"base_url": values["openai_api_base"],
|
||||
"api_key": values["anyscale_api_key"].get_secret_value(),
|
||||
"base_url": values["anyscale_api_base"],
|
||||
# To do: future support
|
||||
# "organization": values["openai_organization"],
|
||||
# "timeout": values["request_timeout"],
|
||||
@ -152,6 +146,8 @@ class ChatAnyscale(ChatOpenAI):
|
||||
}
|
||||
values["client"] = openai.OpenAI(**client_params).chat.completions
|
||||
else:
|
||||
values["openai_api_base"] = values["anyscale_api_base"]
|
||||
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value()
|
||||
values["client"] = openai.ChatCompletion
|
||||
except AttributeError as exc:
|
||||
raise ValueError(
|
||||
@ -164,10 +160,9 @@ class ChatAnyscale(ChatOpenAI):
|
||||
values["model_name"] = DEFAULT_MODEL
|
||||
|
||||
model_name = values["model_name"]
|
||||
|
||||
available_models = cls.get_available_models(
|
||||
values["openai_api_key"],
|
||||
values["openai_api_base"],
|
||||
values["anyscale_api_key"].get_secret_value(),
|
||||
values["anyscale_api_base"],
|
||||
)
|
||||
|
||||
if model_name not in available_models:
|
||||
@ -197,9 +192,8 @@ class ChatAnyscale(ChatOpenAI):
|
||||
|
||||
def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int:
|
||||
"""Calculate num tokens with tiktoken package.
|
||||
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/
|
||||
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
||||
Official documentation: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
|
||||
"""
|
||||
if sys.version_info[1] <= 7:
|
||||
return super().get_num_tokens_from_messages(messages)
|
||||
model, encoding = self._get_encoding_model()
|
||||
|
@ -1,15 +1,11 @@
|
||||
"""Wrapper around Anyscale Endpoint"""
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Mapping,
|
||||
Optional,
|
||||
Set,
|
||||
Tuple,
|
||||
cast,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
@ -25,6 +21,13 @@ from langchain_community.llms.openai import (
|
||||
acompletion_with_retry,
|
||||
completion_with_retry,
|
||||
)
|
||||
from langchain_community.utils.openai import is_openai_v1
|
||||
|
||||
DEFAULT_BASE_URL = "https://api.endpoints.anyscale.com/v1"
|
||||
DEFAULT_MODEL = "Meta-Llama/Llama-Guard-7b"
|
||||
|
||||
# Completion models support by Anyscale Endpoints
|
||||
COMPLETION_MODELS = ["Meta-Llama/Llama-Guard-7b"]
|
||||
|
||||
|
||||
def update_token_usage(
|
||||
@ -64,16 +67,14 @@ def create_llm_result(
|
||||
class Anyscale(BaseOpenAI):
|
||||
"""Anyscale large language models.
|
||||
|
||||
To use, you should have the environment variable ``ANYSCALE_API_BASE`` and
|
||||
``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named
|
||||
parameter to the constructor.
|
||||
To use, you should have the environment variable ``ANYSCALE_API_KEY``set with your
|
||||
Anyscale Endpoint, or pass it as a named parameter to the constructor.
|
||||
To use with Anyscale Private Endpoint, please also set ``ANYSCALE_BASE_URL``.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain_community.llms import Anyscale
|
||||
anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE",
|
||||
anyscale_api_key="ANYSCALE_API_KEY",
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf")
|
||||
from langchain.llms import Anyscale
|
||||
anyscalellm = Anyscale(anyscale_api_key="ANYSCALE_API_KEY")
|
||||
# To leverage Ray for parallel processing
|
||||
@ray.remote(num_cpus=1)
|
||||
def send_query(llm, text):
|
||||
@ -84,8 +85,9 @@ class Anyscale(BaseOpenAI):
|
||||
"""
|
||||
|
||||
"""Key word arguments to pass to the model."""
|
||||
anyscale_api_base: Optional[str] = None
|
||||
anyscale_api_key: Optional[SecretStr] = None
|
||||
anyscale_api_base: str = Field(default=DEFAULT_BASE_URL)
|
||||
anyscale_api_key: SecretStr = Field(default=None)
|
||||
model_name: str = Field(default=DEFAULT_MODEL)
|
||||
|
||||
prefix_messages: List = Field(default_factory=list)
|
||||
|
||||
@ -97,17 +99,47 @@ class Anyscale(BaseOpenAI):
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["anyscale_api_base"] = get_from_dict_or_env(
|
||||
values, "anyscale_api_base", "ANYSCALE_API_BASE"
|
||||
values,
|
||||
"anyscale_api_base",
|
||||
"ANYSCALE_API_BASE",
|
||||
default=DEFAULT_BASE_URL,
|
||||
)
|
||||
values["anyscale_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY")
|
||||
)
|
||||
values["model_name"] = get_from_dict_or_env(
|
||||
values,
|
||||
"model_name",
|
||||
"MODEL_NAME",
|
||||
default=DEFAULT_MODEL,
|
||||
)
|
||||
if values["model_name"] not in COMPLETION_MODELS:
|
||||
raise ValueError(
|
||||
"langchain_community.llm.Anyscale ONLY works \
|
||||
with completions models.For Chat models, please use \
|
||||
langchain_community.chat_model.ChatAnyscale"
|
||||
)
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
## Always create ChatComplete client, replacing the legacy Complete client
|
||||
values["client"] = openai.ChatCompletion
|
||||
if is_openai_v1():
|
||||
client_params = {
|
||||
"api_key": values["anyscale_api_key"].get_secret_value(),
|
||||
"base_url": values["anyscale_api_base"],
|
||||
# To do: future support
|
||||
# "organization": values["openai_organization"],
|
||||
# "timeout": values["request_timeout"],
|
||||
# "max_retries": values["max_retries"],
|
||||
# "default_headers": values["default_headers"],
|
||||
# "default_query": values["default_query"],
|
||||
# "http_client": values["http_client"],
|
||||
}
|
||||
values["client"] = openai.OpenAI(**client_params).completions
|
||||
else:
|
||||
values["openai_api_base"] = values["anyscale_api_base"]
|
||||
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value()
|
||||
values["client"] = openai.Completion
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
@ -132,70 +164,22 @@ class Anyscale(BaseOpenAI):
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
"""Get the parameters used to invoke the model."""
|
||||
openai_creds: Dict[str, Any] = {
|
||||
"api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(),
|
||||
"api_base": self.anyscale_api_base,
|
||||
"model": self.model_name,
|
||||
}
|
||||
return {**openai_creds, **{"model": self.model_name}, **super()._default_params}
|
||||
if not is_openai_v1():
|
||||
openai_creds.update(
|
||||
{
|
||||
"api_key": self.anyscale_api_key.get_secret_value(),
|
||||
"api_base": self.anyscale_api_base,
|
||||
}
|
||||
)
|
||||
return {**openai_creds, **super()._invocation_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "Anyscale LLM"
|
||||
|
||||
def _get_chat_messages(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> Tuple:
|
||||
if len(prompts) > 1:
|
||||
raise ValueError(
|
||||
f"Anyscale currently only supports single prompt, got {prompts}"
|
||||
)
|
||||
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
||||
params: Dict[str, Any] = self._invocation_params
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
if params.get("max_tokens") == -1:
|
||||
# for Chat api, omitting max_tokens is equivalent to having no limit
|
||||
del params["max_tokens"]
|
||||
return messages, params
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_messages([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
for stream_resp in completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_messages([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
async for stream_resp in await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
@ -203,13 +187,37 @@ class Anyscale(BaseOpenAI):
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
"""Call out to OpenAI's endpoint with k unique prompts.
|
||||
|
||||
Args:
|
||||
prompts: The prompts to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The full LLM output.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = openai.generate(["Tell me a joke."])
|
||||
"""
|
||||
# TODO: write a unit test for this
|
||||
params = self._invocation_params
|
||||
params = {**params, **kwargs}
|
||||
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
||||
choices = []
|
||||
token_usage: Dict[str, int] = {}
|
||||
# Get the token usage from the response.
|
||||
# Includes prompt, completion, and total tokens used.
|
||||
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
||||
for prompt in prompts:
|
||||
system_fingerprint: Optional[str] = None
|
||||
for _prompts in sub_prompts:
|
||||
if self.streaming:
|
||||
if len(_prompts) > 1:
|
||||
raise ValueError("Cannot stream results with multiple prompts.")
|
||||
|
||||
generation: Optional[GenerationChunk] = None
|
||||
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
||||
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
@ -217,7 +225,7 @@ class Anyscale(BaseOpenAI):
|
||||
assert generation is not None
|
||||
choices.append(
|
||||
{
|
||||
"message": {"content": generation.text},
|
||||
"text": generation.text,
|
||||
"finish_reason": generation.generation_info.get("finish_reason")
|
||||
if generation.generation_info
|
||||
else None,
|
||||
@ -226,16 +234,30 @@ class Anyscale(BaseOpenAI):
|
||||
else None,
|
||||
}
|
||||
)
|
||||
|
||||
else:
|
||||
messages, params = self._get_chat_messages([prompt], stop)
|
||||
params = {**params, **kwargs}
|
||||
response = completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
## THis is the ONLY change from BaseOpenAI()._generate()
|
||||
self,
|
||||
prompt=_prompts[0],
|
||||
run_manager=run_manager,
|
||||
**params,
|
||||
)
|
||||
if not isinstance(response, dict):
|
||||
# V1 client returns the response in an PyDantic object instead of
|
||||
# dict. For the transition period, we deep convert it to dict.
|
||||
response = response.dict()
|
||||
|
||||
choices.extend(response["choices"])
|
||||
update_token_usage(_keys, response, token_usage)
|
||||
return create_llm_result(choices, prompts, token_usage, self.model_name)
|
||||
if not system_fingerprint:
|
||||
system_fingerprint = response.get("system_fingerprint")
|
||||
return self.create_llm_result(
|
||||
choices,
|
||||
prompts,
|
||||
params,
|
||||
token_usage,
|
||||
system_fingerprint=system_fingerprint,
|
||||
)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
@ -244,14 +266,25 @@ class Anyscale(BaseOpenAI):
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
"""Call out to OpenAI's endpoint async with k unique prompts."""
|
||||
params = self._invocation_params
|
||||
params = {**params, **kwargs}
|
||||
sub_prompts = self.get_sub_prompts(params, prompts, stop)
|
||||
choices = []
|
||||
token_usage: Dict[str, int] = {}
|
||||
# Get the token usage from the response.
|
||||
# Includes prompt, completion, and total tokens used.
|
||||
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
||||
for prompt in prompts:
|
||||
messages = self.prefix_messages + [{"role": "user", "content": prompt}]
|
||||
system_fingerprint: Optional[str] = None
|
||||
for _prompts in sub_prompts:
|
||||
if self.streaming:
|
||||
if len(_prompts) > 1:
|
||||
raise ValueError("Cannot stream results with multiple prompts.")
|
||||
|
||||
generation: Optional[GenerationChunk] = None
|
||||
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
|
||||
async for chunk in self._astream(
|
||||
_prompts[0], stop, run_manager, **kwargs
|
||||
):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
@ -259,7 +292,7 @@ class Anyscale(BaseOpenAI):
|
||||
assert generation is not None
|
||||
choices.append(
|
||||
{
|
||||
"message": {"content": generation.text},
|
||||
"text": generation.text,
|
||||
"finish_reason": generation.generation_info.get("finish_reason")
|
||||
if generation.generation_info
|
||||
else None,
|
||||
@ -269,11 +302,21 @@ class Anyscale(BaseOpenAI):
|
||||
}
|
||||
)
|
||||
else:
|
||||
messages, params = self._get_chat_messages([prompt], stop)
|
||||
params = {**params, **kwargs}
|
||||
response = await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
## THis is the ONLY change from BaseOpenAI()._agenerate()
|
||||
self,
|
||||
prompt=_prompts[0],
|
||||
run_manager=run_manager,
|
||||
**params,
|
||||
)
|
||||
if not isinstance(response, dict):
|
||||
response = response.dict()
|
||||
choices.extend(response["choices"])
|
||||
update_token_usage(_keys, response, token_usage)
|
||||
return create_llm_result(choices, prompts, token_usage, self.model_name)
|
||||
return self.create_llm_result(
|
||||
choices,
|
||||
prompts,
|
||||
params,
|
||||
token_usage,
|
||||
system_fingerprint=system_fingerprint,
|
||||
)
|
||||
|
@ -8,9 +8,7 @@ from langchain_community.llms.anyscale import Anyscale
|
||||
|
||||
@pytest.mark.requires("openai")
|
||||
def test_api_key_is_secret_string() -> None:
|
||||
llm = Anyscale(
|
||||
anyscale_api_key="secret-api-key", anyscale_api_base="test", model_name="test"
|
||||
)
|
||||
llm = Anyscale(anyscale_api_key="secret-api-key", anyscale_api_base="test")
|
||||
assert isinstance(llm.anyscale_api_key, SecretStr)
|
||||
|
||||
|
||||
@ -20,7 +18,7 @@ def test_api_key_masked_when_passed_from_env(
|
||||
) -> None:
|
||||
"""Test initialization with an API key provided via an env variable"""
|
||||
monkeypatch.setenv("ANYSCALE_API_KEY", "secret-api-key")
|
||||
llm = Anyscale(anyscale_api_base="test", model_name="test")
|
||||
llm = Anyscale(anyscale_api_base="test")
|
||||
print(llm.anyscale_api_key, end="")
|
||||
captured = capsys.readouterr()
|
||||
|
||||
@ -32,9 +30,7 @@ def test_api_key_masked_when_passed_via_constructor(
|
||||
capsys: CaptureFixture,
|
||||
) -> None:
|
||||
"""Test initialization with an API key provided via the initializer"""
|
||||
llm = Anyscale(
|
||||
anyscale_api_key="secret-api-key", anyscale_api_base="test", model_name="test"
|
||||
)
|
||||
llm = Anyscale(anyscale_api_key="secret-api-key", anyscale_api_base="test")
|
||||
print(llm.anyscale_api_key, end="")
|
||||
captured = capsys.readouterr()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user