mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 14:31:55 +00:00
community: ChatSnowflakeCortex - Add streaming functionality (#27753)
Description: snowflake.py Add _stream and _stream_content methods to enable streaming functionality fix pydantic issues and added functionality with the overall langchain version upgrade added bind_tools method for agentic workflows support through langgraph updated the _generate method to account for agentic workflows support through langgraph cosmetic changes to comments and if conditions snowflake.ipynb Added _stream example cosmetic changes to comments fixed lint errors check_pydantic.sh Decreased counter from 126 to 125 as suggested when formatting --------- Co-authored-by: Prathamesh Nimkar <prathamesh.nimkar@snowflake.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
committed by
GitHub
parent
d834c6b618
commit
ca054ed1b1
@@ -1,22 +1,35 @@
|
||||
import json
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatResult
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import (
|
||||
convert_to_secret_str,
|
||||
get_from_dict_or_env,
|
||||
get_pydantic_field_names,
|
||||
pre_init,
|
||||
)
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
from langchain_core.utils.utils import _build_model_kwargs
|
||||
from pydantic import Field, SecretStr, model_validator
|
||||
|
||||
@@ -44,7 +57,7 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
"content": message.content,
|
||||
}
|
||||
|
||||
# populate role and additional message data
|
||||
# Populate role and additional message data
|
||||
if isinstance(message, ChatMessage) and message.role in SUPPORTED_ROLES:
|
||||
message_dict["role"] = message.role
|
||||
elif isinstance(message, SystemMessage):
|
||||
@@ -76,8 +89,8 @@ def _truncate_at_stop_tokens(
|
||||
class ChatSnowflakeCortex(BaseChatModel):
|
||||
"""Snowflake Cortex based Chat model
|
||||
|
||||
To use you must have the ``snowflake-snowpark-python`` Python package installed and
|
||||
either:
|
||||
To use the chat model, you must have the ``snowflake-snowpark-python`` Python
|
||||
package installed and either:
|
||||
|
||||
1. environment variables set with your snowflake credentials or
|
||||
2. directly passed in as kwargs to the ChatSnowflakeCortex constructor.
|
||||
@@ -89,24 +102,30 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
chat = ChatSnowflakeCortex()
|
||||
"""
|
||||
|
||||
_sp_session: Any = None
|
||||
# test_tools: Dict[str, Any] = Field(default_factory=dict)
|
||||
test_tools: Dict[str, Union[Dict[str, Any], Type, Callable, BaseTool]] = Field(
|
||||
default_factory=dict
|
||||
)
|
||||
|
||||
session: Any = None
|
||||
"""Snowpark session object."""
|
||||
|
||||
model: str = "snowflake-arctic"
|
||||
"""Snowflake cortex hosted LLM model name, defaulted to `snowflake-arctic`.
|
||||
Refer to docs for more options."""
|
||||
model: str = "mistral-large"
|
||||
"""Snowflake cortex hosted LLM model name, defaulted to `mistral-large`.
|
||||
Refer to docs for more options. Also note, not all models support
|
||||
agentic workflows."""
|
||||
|
||||
cortex_function: str = "complete"
|
||||
"""Cortex function to use, defaulted to `complete`.
|
||||
Refer to docs for more options."""
|
||||
|
||||
temperature: float = 0.7
|
||||
temperature: float = 0
|
||||
"""Model temperature. Value should be >= 0 and <= 1.0"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
"""The maximum number of output tokens in the response."""
|
||||
|
||||
top_p: Optional[float] = None
|
||||
top_p: Optional[float] = 0
|
||||
"""top_p adjusts the number of choices for each predicted tokens based on
|
||||
cumulative probabilities. Value should be ranging between 0.0 and 1.0.
|
||||
"""
|
||||
@@ -126,6 +145,27 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
snowflake_role: Optional[str] = Field(default=None, alias="role")
|
||||
"""Automatically inferred from env var `SNOWFLAKE_ROLE` if not provided."""
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
|
||||
*,
|
||||
tool_choice: Optional[
|
||||
Union[dict, str, Literal["auto", "any", "none"], bool]
|
||||
] = "auto",
|
||||
**kwargs: Any,
|
||||
) -> "ChatSnowflakeCortex":
|
||||
"""Bind tool-like objects to this chat model, ensuring they conform to
|
||||
expected formats."""
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
# self.test_tools.update(formatted_tools)
|
||||
formatted_tools_dict = {
|
||||
tool["name"]: tool for tool in formatted_tools if "name" in tool
|
||||
}
|
||||
self.test_tools.update(formatted_tools_dict)
|
||||
|
||||
return self
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
||||
@@ -134,14 +174,15 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
values = _build_model_kwargs(values, all_required_field_names)
|
||||
return values
|
||||
|
||||
@pre_init
|
||||
@model_validator(mode="before")
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
try:
|
||||
from snowflake.snowpark import Session
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`snowflake-snowpark-python` package not found, please install it with "
|
||||
"`pip install snowflake-snowpark-python`"
|
||||
"""`snowflake-snowpark-python` package not found, please install:
|
||||
`pip install snowflake-snowpark-python`
|
||||
"""
|
||||
)
|
||||
|
||||
values["snowflake_username"] = get_from_dict_or_env(
|
||||
@@ -174,18 +215,19 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
"schema": values["snowflake_schema"],
|
||||
"warehouse": values["snowflake_warehouse"],
|
||||
"role": values["snowflake_role"],
|
||||
"client_session_keep_alive": "True",
|
||||
}
|
||||
|
||||
try:
|
||||
values["_sp_session"] = Session.builder.configs(connection_params).create()
|
||||
values["session"] = Session.builder.configs(connection_params).create()
|
||||
except Exception as e:
|
||||
raise ChatSnowflakeCortexError(f"Failed to create session: {e}")
|
||||
|
||||
return values
|
||||
|
||||
def __del__(self) -> None:
|
||||
if getattr(self, "_sp_session", None) is not None:
|
||||
self._sp_session.close()
|
||||
if getattr(self, "session", None) is not None:
|
||||
self.session.close()
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
@@ -200,23 +242,55 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||
message_str = str(message_dicts)
|
||||
options = {"temperature": self.temperature}
|
||||
if self.top_p is not None:
|
||||
options["top_p"] = self.top_p
|
||||
if self.max_tokens is not None:
|
||||
options["max_tokens"] = self.max_tokens
|
||||
options_str = str(options)
|
||||
|
||||
# Check for tool invocation in the messages and prepare for tool use
|
||||
tool_output = None
|
||||
for message in messages:
|
||||
if (
|
||||
isinstance(message.content, dict)
|
||||
and isinstance(message, SystemMessage)
|
||||
and "invoke_tool" in message.content
|
||||
):
|
||||
tool_info = json.loads(message.content.get("invoke_tool"))
|
||||
tool_name = tool_info.get("tool_name")
|
||||
if tool_name in self.test_tools:
|
||||
tool_args = tool_info.get("args", {})
|
||||
tool_output = self.test_tools[tool_name](**tool_args)
|
||||
break
|
||||
|
||||
# Prepare messages for SQL query
|
||||
if tool_output:
|
||||
message_dicts.append(
|
||||
{"tool_output": str(tool_output)}
|
||||
) # Ensure tool_output is a string
|
||||
|
||||
# JSON dump the message_dicts and options without additional escaping
|
||||
message_json = json.dumps(message_dicts)
|
||||
options = {
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p if self.top_p is not None else 1.0,
|
||||
"max_tokens": self.max_tokens if self.max_tokens is not None else 2048,
|
||||
}
|
||||
options_json = json.dumps(options) # JSON string of options
|
||||
|
||||
# Form the SQL statement using JSON literals
|
||||
sql_stmt = f"""
|
||||
select snowflake.cortex.{self.cortex_function}(
|
||||
'{self.model}'
|
||||
,{message_str},{options_str}) as llm_response;"""
|
||||
'{self.model}',
|
||||
parse_json('{message_json}'),
|
||||
parse_json('{options_json}')
|
||||
) as llm_response;
|
||||
"""
|
||||
|
||||
try:
|
||||
l_rows = self._sp_session.sql(sql_stmt).collect()
|
||||
# Use the Snowflake Cortex Complete function
|
||||
self.session.sql(
|
||||
f"USE WAREHOUSE {self.session.get_current_warehouse()};"
|
||||
).collect()
|
||||
l_rows = self.session.sql(sql_stmt).collect()
|
||||
except Exception as e:
|
||||
raise ChatSnowflakeCortexError(
|
||||
f"Error while making request to Snowflake Cortex via Snowpark: {e}"
|
||||
f"Error while making request to Snowflake Cortex: {e}"
|
||||
)
|
||||
|
||||
response = json.loads(l_rows[0]["LLM_RESPONSE"])
|
||||
@@ -229,3 +303,89 @@ class ChatSnowflakeCortex(BaseChatModel):
|
||||
)
|
||||
generation = ChatGeneration(message=message)
|
||||
return ChatResult(generations=[generation])
|
||||
|
||||
def _stream_content(
|
||||
self, content: str, stop: Optional[List[str]]
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""
|
||||
Stream the output of the model in chunks to return ChatGenerationChunk.
|
||||
"""
|
||||
chunk_size = 50 # Define a reasonable chunk size for streaming
|
||||
truncated_content = _truncate_at_stop_tokens(content, stop)
|
||||
|
||||
for i in range(0, len(truncated_content), chunk_size):
|
||||
chunk_content = truncated_content[i : i + chunk_size]
|
||||
|
||||
# Create and yield a ChatGenerationChunk with partial content
|
||||
yield ChatGenerationChunk(message=AIMessageChunk(content=chunk_content))
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
"""Stream the output of the model in chunks to return ChatGenerationChunk."""
|
||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||
|
||||
# Check for and potentially use a tool before streaming
|
||||
for message in messages:
|
||||
if (
|
||||
isinstance(message, str)
|
||||
and isinstance(message, SystemMessage)
|
||||
and "invoke_tool" in message.content
|
||||
):
|
||||
tool_info = json.loads(message.content)
|
||||
tool_list = tool_info.get("invoke_tools", [])
|
||||
for tool in tool_list:
|
||||
tool_name = tool.get("tool_name")
|
||||
tool_args = tool.get("args", {})
|
||||
|
||||
if tool_name in self.test_tools:
|
||||
tool_args = tool_info.get("args", {})
|
||||
tool_result = self.test_tools[tool_name](**tool_args)
|
||||
additional_context = {"tool_output": tool_result}
|
||||
message_dicts.append(
|
||||
additional_context
|
||||
) # Append tool result to message dicts
|
||||
|
||||
# JSON dump the message_dicts and options without additional escaping
|
||||
message_json = json.dumps(message_dicts)
|
||||
options = {
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p if self.top_p is not None else 1.0,
|
||||
"max_tokens": self.max_tokens if self.max_tokens is not None else 2048,
|
||||
# "stream": True,
|
||||
}
|
||||
options_json = json.dumps(options) # JSON string of options
|
||||
|
||||
# Form the SQL statement using JSON literals
|
||||
sql_stmt = f"""
|
||||
select snowflake.cortex.{self.cortex_function}(
|
||||
'{self.model}',
|
||||
parse_json('{message_json}'),
|
||||
parse_json('{options_json}')
|
||||
) as llm_stream_response;
|
||||
"""
|
||||
|
||||
try:
|
||||
# Use the Snowflake Cortex Complete function
|
||||
self.session.sql(
|
||||
f"USE WAREHOUSE {self.session.get_current_warehouse()};"
|
||||
).collect()
|
||||
result = self.session.sql(sql_stmt).collect()
|
||||
|
||||
# Iterate over the generator to yield streaming responses
|
||||
for row in result:
|
||||
response = json.loads(row["LLM_STREAM_RESPONSE"])
|
||||
ai_message_content = response["choices"][0]["messages"]
|
||||
|
||||
# Stream response content in chunks
|
||||
for chunk in self._stream_content(ai_message_content, stop):
|
||||
yield chunk
|
||||
|
||||
except Exception as e:
|
||||
raise ChatSnowflakeCortexError(
|
||||
f"Error while making request to Snowflake Cortex stream: {e}"
|
||||
)
|
||||
|
@@ -20,7 +20,7 @@ count=$(git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_ini
|
||||
# PRs that increase the current count will not be accepted.
|
||||
# PRs that decrease update the code in the repository
|
||||
# and allow decreasing the count of are welcome!
|
||||
current_count=125
|
||||
current_count=124
|
||||
|
||||
if [ "$count" -gt "$current_count" ]; then
|
||||
echo "The PR seems to be introducing new usage of @root_validator and/or @field_validator."
|
||||
|
Reference in New Issue
Block a user