mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-16 12:32:06 +00:00
docs: standardize ChatHuggingFace (#22693)
**Updated ChatHuggingFace doc string as per issue #22296**: "langchain_huggingface: updated docstring for ChatHuggingFace in langchain_huggingface to match that of the description (in the appendix) provided in issue #22296. " **Issue:** This PR is in response to issue #22296, and more specifically ChatHuggingFace model. In particular, this PR updates the docstring for langchain/libs/partners/hugging_face/langchain_huggingface/chat_models/huggingface.py by adding the following sections: Instantiate, Invoke, Stream, Async, Tool calling, and Response metadata. I used the template from the Anthropic implementation and referenced the Appendix of the original issue post. I also noted that: langchain_community hugging face llms do not work with langchain_huggingface's ChatHuggingFace model (at least for me); the .stream(messages) functionality of ChatHuggingFace only returned a block of response. --------- Co-authored-by: lucast2021 <lucast2021@headroyce.org> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
d92f2251c8
commit
cb79e80b0b
@ -145,18 +145,166 @@ class ChatHuggingFace(BaseChatModel):
|
||||
Wrapper for using Hugging Face LLM's as ChatModels.
|
||||
|
||||
Works with `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`,
|
||||
and `HuggingFaceHub` LLMs.
|
||||
`HuggingFaceHub`, and `HuggingFacePipeline` LLMs.
|
||||
|
||||
Upon instantiating this class, the model_id is resolved from the url
|
||||
provided to the LLM, and the appropriate tokenizer is loaded from
|
||||
the HuggingFace Hub.
|
||||
|
||||
Adapted from: https://python.langchain.com/docs/integrations/chat/llama2_chat
|
||||
"""
|
||||
Setup:
|
||||
Install ``langchain-huggingface`` and ensure your Hugging Face token
|
||||
is saved.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install langchain-huggingface
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from huggingface_hub import login
|
||||
login() # You will be prompted for your HF key, which will then be saved locally
|
||||
|
||||
Key init args — completion params:
|
||||
llm: `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`, `HuggingFaceHub`, or
|
||||
'HuggingFacePipeline' LLM to be used.
|
||||
|
||||
Key init args — client params:
|
||||
custom_get_token_ids: Optional[Callable[[str], List[int]]]
|
||||
Optional encoder to use for counting tokens.
|
||||
metadata: Optional[Dict[str, Any]]
|
||||
Metadata to add to the run trace.
|
||||
tags: Optional[List[str]]
|
||||
Tags to add to the run trace.
|
||||
tokenizer: Any
|
||||
verbose: bool
|
||||
Whether to print out response text.
|
||||
|
||||
See full list of supported init args and their descriptions in the params
|
||||
section.
|
||||
|
||||
Instantiate:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_huggingface import HuggingFaceEndpoint,
|
||||
ChatHuggingFace
|
||||
|
||||
llm = HuggingFaceEndpoint(
|
||||
repo_id="microsoft/Phi-3-mini-4k-instruct",
|
||||
task="text-generation",
|
||||
max_new_tokens=512,
|
||||
do_sample=False,
|
||||
repetition_penalty=1.03,
|
||||
)
|
||||
|
||||
chat = ChatHuggingFace(llm=llm, verbose=True)
|
||||
|
||||
Invoke:
|
||||
.. code-block:: python
|
||||
|
||||
messages = [
|
||||
("system", "You are a helpful translator. Translate the user
|
||||
sentence to French."),
|
||||
("human", "I love programming."),
|
||||
]
|
||||
|
||||
chat(...).invoke(messages)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(content='Je ai une passion pour le programme.\n\nIn
|
||||
French, we use "ai" for masculine subjects and "a" for feminine
|
||||
subjects. Since "programming" is gender-neutral in English, we
|
||||
will go with the masculine "programme".\n\nConfirmation: "J\'aime
|
||||
le programme." is more commonly used. The sentence above is
|
||||
technically accurate, but less commonly used in spoken French as
|
||||
"ai" is used less frequently in everyday speech.',
|
||||
response_metadata={'token_usage': ChatCompletionOutputUsage
|
||||
(completion_tokens=100, prompt_tokens=55, total_tokens=155),
|
||||
'model': '', 'finish_reason': 'length'},
|
||||
id='run-874c24b7-0272-4c99-b259-5d6d7facbc56-0')
|
||||
|
||||
Stream:
|
||||
.. code-block:: python
|
||||
|
||||
for chunk in chat.stream(messages):
|
||||
print(chunk)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
content='Je ai une passion pour le programme.\n\nIn French, we use
|
||||
"ai" for masculine subjects and "a" for feminine subjects.
|
||||
Since "programming" is gender-neutral in English,
|
||||
we will go with the masculine "programme".\n\nConfirmation:
|
||||
"J\'aime le programme." is more commonly used. The sentence
|
||||
above is technically accurate, but less commonly used in spoken
|
||||
French as "ai" is used less frequently in everyday speech.'
|
||||
response_metadata={'token_usage': ChatCompletionOutputUsage
|
||||
(completion_tokens=100, prompt_tokens=55, total_tokens=155),
|
||||
'model': '', 'finish_reason': 'length'}
|
||||
id='run-7d7b1967-9612-4f9a-911a-b2b5ca85046a-0'
|
||||
|
||||
Async:
|
||||
.. code-block:: python
|
||||
|
||||
await chat.ainvoke(messages)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
AIMessage(content='Je déaime le programming.\n\nLittérale : Je
|
||||
(j\'aime) déaime (le) programming.\n\nNote: "Programming" in
|
||||
French is "programmation". But here, I used "programming" instead
|
||||
of "programmation" because the user said "I love programming"
|
||||
instead of "I love programming (in French)", which would be
|
||||
"J\'aime la programmation". By translating the sentence
|
||||
literally, I preserved the original meaning of the user\'s
|
||||
sentence.', id='run-fd850318-e299-4735-b4c6-3496dc930b1d-0')
|
||||
|
||||
Tool calling:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
|
||||
class GetWeather(BaseModel):
|
||||
'''Get the current weather in a given location'''
|
||||
|
||||
location: str = Field(..., description="The city and state,
|
||||
e.g. San Francisco, CA")
|
||||
|
||||
class GetPopulation(BaseModel):
|
||||
'''Get the current population in a given location'''
|
||||
|
||||
location: str = Field(..., description="The city and state,
|
||||
e.g. San Francisco, CA")
|
||||
|
||||
chat_with_tools = chat.bind_tools([GetWeather, GetPopulation])
|
||||
ai_msg = chat_with_tools.invoke("Which city is hotter today and
|
||||
which is bigger: LA or NY?")
|
||||
ai_msg.tool_calls
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[{'name': 'GetPopulation',
|
||||
'args': {'location': 'Los Angeles, CA'},
|
||||
'id': '0'}]
|
||||
|
||||
Response metadata
|
||||
.. code-block:: python
|
||||
|
||||
ai_msg = chat.invoke(messages)
|
||||
ai_msg.response_metadata
|
||||
|
||||
.. code-block:: python
|
||||
{'token_usage': ChatCompletionOutputUsage(completion_tokens=100,
|
||||
prompt_tokens=8, total_tokens=108),
|
||||
'model': '',
|
||||
'finish_reason': 'length'}
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
llm: Any
|
||||
"""LLM, must be of type HuggingFaceTextGenInference, HuggingFaceEndpoint,
|
||||
HuggingFaceHub, or HuggingFacePipeline."""
|
||||
# TODO: Is system_message used anywhere?
|
||||
system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
|
||||
tokenizer: Any = None
|
||||
model_id: Optional[str] = None
|
||||
|
Loading…
Reference in New Issue
Block a user