mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 15:03:21 +00:00
community[minor]: weight only quantization with intel-extension-for-transformers. (#14504)
Support weight only quantization with intel-extension-for-transformers. [Intel® Extension for Transformers](https://github.com/intel/intel-extension-for-transformers) is an innovative toolkit to accelerate Transformer-based models on Intel platforms, in particular effective on 4th Intel Xeon Scalable processor [Sapphire Rapids](https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html) (codenamed Sapphire Rapids). The toolkit provides the below key features: * Seamless user experience of model compressions on Transformer-based models by extending [Hugging Face transformers](https://github.com/huggingface/transformers) APIs and leveraging [Intel® Neural Compressor](https://github.com/intel/neural-compressor) * Advanced software optimizations and unique compression-aware runtime. * Optimized Transformer-based model packages. * [NeuralChat](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat), a customizable chatbot framework to create your own chatbot within minutes by leveraging a rich set of plugins and SOTA optimizations. * [Inference](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/llm/runtime/graph) of Large Language Model (LLM) in pure C/C++ with weight-only quantization kernels. This PR is an integration of weight only quantization feature with intel-extension-for-transformers. Unit test is in lib/langchain/tests/integration_tests/llm/test_weight_only_quantization.py The notebook is in docs/docs/integrations/llms/weight_only_quantization.ipynb. The document is in docs/docs/integrations/providers/weight_only_quantization.mdx. --------- Signed-off-by: Cheng, Penghui <penghui.cheng@intel.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -0,0 +1,62 @@
|
||||
"""Test HuggingFace Pipeline wrapper."""
|
||||
|
||||
from langchain_community.llms.weight_only_quantization import WeightOnlyQuantPipeline
|
||||
|
||||
model_id = "google/flan-t5-large"
|
||||
|
||||
|
||||
def test_weight_only_quantization_with_config() -> None:
|
||||
"""Test valid call to HuggingFace text2text model."""
|
||||
from intel_extension_for_transformers.transformers import WeightOnlyQuantConfig
|
||||
|
||||
conf = WeightOnlyQuantConfig(weight_dtype="nf4")
|
||||
llm = WeightOnlyQuantPipeline.from_model_id(
|
||||
model_id=model_id, task="text2text-generation", quantization_config=conf
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_weight_only_quantization_4bit() -> None:
|
||||
"""Test valid call to HuggingFace text2text model."""
|
||||
llm = WeightOnlyQuantPipeline.from_model_id(
|
||||
model_id=model_id, task="text2text-generation", load_in_4bit=True
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_weight_only_quantization_8bit() -> None:
|
||||
"""Test valid call to HuggingFace text2text model."""
|
||||
llm = WeightOnlyQuantPipeline.from_model_id(
|
||||
model_id=model_id, task="text2text-generation", load_in_8bit=True
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_init_with_pipeline() -> None:
|
||||
"""Test initialization with a HF pipeline."""
|
||||
from intel_extension_for_transformers.transformers import AutoModelForSeq2SeqLM
|
||||
from transformers import AutoTokenizer, pipeline
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, load_in_4bit=True, use_llm_runtime=False
|
||||
)
|
||||
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
||||
llm = WeightOnlyQuantPipeline(pipeline=pipe)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def text_weight_only_pipeline_summarization() -> None:
|
||||
"""Test valid call to HuggingFace summarization model."""
|
||||
from intel_extension_for_transformers.transformers import WeightOnlyQuantConfig
|
||||
|
||||
conf = WeightOnlyQuantConfig()
|
||||
llm = WeightOnlyQuantPipeline.from_model_id(
|
||||
model_id=model_id, task="summarization", quantization_config=conf
|
||||
)
|
||||
output = llm("Say foo:")
|
||||
assert isinstance(output, str)
|
Reference in New Issue
Block a user