mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 05:25:04 +00:00
Integrating the Yi family of models. (#24491)
Thank you for contributing to LangChain! - [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation" - [x] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** This PR adds support for the Yi model to LangChain. - **Dependencies:** [langchain_core,requests,contextlib,typing,logging,json,langchain_community] - **Twitter handle:** 01.AI - [x] **Add tests and docs**: I've added the corresponding documentation to the relevant paths --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
This commit is contained in:
339
libs/community/langchain_community/chat_models/yi.py
Normal file
339
libs/community/langchain_community/chat_models/yi.py
Normal file
@@ -0,0 +1,339 @@
|
||||
import json
|
||||
import logging
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, Type
|
||||
|
||||
import requests
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
agenerate_from_stream,
|
||||
generate_from_stream,
|
||||
)
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import Field, SecretStr
|
||||
from langchain_core.utils import (
|
||||
convert_to_secret_str,
|
||||
get_from_dict_or_env,
|
||||
get_pydantic_field_names,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
DEFAULT_API_BASE_CN = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||
DEFAULT_API_BASE_GLOBAL = "https://api.01.ai/v1/chat/completions"
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
message_dict: Dict[str, Any]
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
|
||||
return message_dict
|
||||
|
||||
|
||||
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
role = _dict["role"]
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict["content"])
|
||||
elif role == "assistant":
|
||||
return AIMessage(content=_dict.get("content", "") or "")
|
||||
elif role == "system":
|
||||
return AIMessage(content=_dict["content"])
|
||||
else:
|
||||
return ChatMessage(content=_dict["content"], role=role)
|
||||
|
||||
|
||||
def _convert_delta_to_message_chunk(
|
||||
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||
) -> BaseMessageChunk:
|
||||
role: str = _dict["role"]
|
||||
content = _dict.get("content") or ""
|
||||
|
||||
if role == "user" or default_class == HumanMessageChunk:
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(content=content)
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
else:
|
||||
return default_class(content=content, type=role)
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def aconnect_httpx_sse(
|
||||
client: Any, method: str, url: str, **kwargs: Any
|
||||
) -> AsyncIterator:
|
||||
from httpx_sse import EventSource
|
||||
|
||||
async with client.stream(method, url, **kwargs) as response:
|
||||
yield EventSource(response)
|
||||
|
||||
|
||||
class ChatYi(BaseChatModel):
|
||||
"""Yi chat models API."""
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
return {
|
||||
"yi_api_key": "YI_API_KEY",
|
||||
}
|
||||
|
||||
@property
|
||||
def lc_serializable(self) -> bool:
|
||||
return True
|
||||
|
||||
yi_api_base: str = Field(default=DEFAULT_API_BASE_CN)
|
||||
yi_api_key: SecretStr = Field(alias="api_key")
|
||||
region: str = Field(default="cn") # 默认使用中国区
|
||||
streaming: bool = False
|
||||
request_timeout: int = Field(default=60, alias="timeout")
|
||||
model: str = "yi-large"
|
||||
temperature: Optional[float] = Field(default=0.7)
|
||||
top_p: float = 0.7
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
class Config:
|
||||
allow_population_by_field_name = True
|
||||
|
||||
def __init__(self, **kwargs: Any) -> None:
|
||||
kwargs["yi_api_key"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(
|
||||
kwargs,
|
||||
["yi_api_key", "api_key"],
|
||||
"YI_API_KEY",
|
||||
)
|
||||
)
|
||||
if kwargs.get("yi_api_base") is None:
|
||||
region = kwargs.get("region", "cn").lower()
|
||||
if region == "global":
|
||||
kwargs["yi_api_base"] = DEFAULT_API_BASE_GLOBAL
|
||||
else:
|
||||
kwargs["yi_api_base"] = DEFAULT_API_BASE_CN
|
||||
|
||||
all_required_field_names = get_pydantic_field_names(self.__class__)
|
||||
extra = kwargs.get("model_kwargs", {})
|
||||
for field_name in list(kwargs):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
extra[field_name] = kwargs.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
kwargs["model_kwargs"] = extra
|
||||
super().__init__(**kwargs)
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"stream": self.streaming,
|
||||
}
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
if self.streaming:
|
||||
stream_iter = self._stream(
|
||||
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return generate_from_stream(stream_iter)
|
||||
|
||||
res = self._chat(messages, **kwargs)
|
||||
if res.status_code != 200:
|
||||
raise ValueError(f"Error from Yi api response: {res}")
|
||||
response = res.json()
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
res = self._chat(messages, stream=True, **kwargs)
|
||||
if res.status_code != 200:
|
||||
raise ValueError(f"Error from Yi api response: {res}")
|
||||
default_chunk_class = AIMessageChunk
|
||||
for chunk in res.iter_lines():
|
||||
chunk = chunk.decode("utf-8").strip("\r\n")
|
||||
parts = chunk.split("data: ", 1)
|
||||
chunk = parts[1] if len(parts) > 1 else None
|
||||
if chunk is None:
|
||||
continue
|
||||
if chunk == "[DONE]":
|
||||
break
|
||||
response = json.loads(chunk)
|
||||
for m in response.get("choices"):
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
m.get("delta"), default_chunk_class
|
||||
)
|
||||
default_chunk_class = chunk.__class__
|
||||
cg_chunk = ChatGenerationChunk(message=chunk)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
||||
yield cg_chunk
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
stream_iter = self._astream(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return await agenerate_from_stream(stream_iter)
|
||||
|
||||
headers = self._create_headers_parameters(**kwargs)
|
||||
payload = self._create_payload_parameters(messages, **kwargs)
|
||||
|
||||
import httpx
|
||||
|
||||
async with httpx.AsyncClient(
|
||||
headers=headers, timeout=self.request_timeout
|
||||
) as client:
|
||||
response = await client.post(self.yi_api_base, json=payload)
|
||||
response.raise_for_status()
|
||||
return self._create_chat_result(response.json())
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
headers = self._create_headers_parameters(**kwargs)
|
||||
payload = self._create_payload_parameters(messages, stream=True, **kwargs)
|
||||
import httpx
|
||||
|
||||
async with httpx.AsyncClient(
|
||||
headers=headers, timeout=self.request_timeout
|
||||
) as client:
|
||||
async with aconnect_httpx_sse(
|
||||
client, "POST", self.yi_api_base, json=payload
|
||||
) as event_source:
|
||||
async for sse in event_source.aiter_sse():
|
||||
chunk = json.loads(sse.data)
|
||||
if len(chunk["choices"]) == 0:
|
||||
continue
|
||||
choice = chunk["choices"][0]
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], AIMessageChunk
|
||||
)
|
||||
finish_reason = choice.get("finish_reason", None)
|
||||
|
||||
generation_info = (
|
||||
{"finish_reason": finish_reason}
|
||||
if finish_reason is not None
|
||||
else None
|
||||
)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info
|
||||
)
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
||||
yield chunk
|
||||
if finish_reason is not None:
|
||||
break
|
||||
|
||||
def _chat(self, messages: List[BaseMessage], **kwargs: Any) -> requests.Response:
|
||||
payload = self._create_payload_parameters(messages, **kwargs)
|
||||
url = self.yi_api_base
|
||||
headers = self._create_headers_parameters(**kwargs)
|
||||
|
||||
res = requests.post(
|
||||
url=url,
|
||||
timeout=self.request_timeout,
|
||||
headers=headers,
|
||||
json=payload,
|
||||
stream=self.streaming,
|
||||
)
|
||||
return res
|
||||
|
||||
def _create_payload_parameters(
|
||||
self, messages: List[BaseMessage], **kwargs: Any
|
||||
) -> Dict[str, Any]:
|
||||
parameters = {**self._default_params, **kwargs}
|
||||
temperature = parameters.pop("temperature", 0.7)
|
||||
top_p = parameters.pop("top_p", 0.7)
|
||||
model = parameters.pop("model")
|
||||
stream = parameters.pop("stream", False)
|
||||
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": [_convert_message_to_dict(m) for m in messages],
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"stream": stream,
|
||||
}
|
||||
return payload
|
||||
|
||||
def _create_headers_parameters(self, **kwargs: Any) -> Dict[str, Any]:
|
||||
parameters = {**self._default_params, **kwargs}
|
||||
default_headers = parameters.pop("headers", {})
|
||||
api_key = ""
|
||||
if self.yi_api_key:
|
||||
api_key = self.yi_api_key.get_secret_value()
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
**default_headers,
|
||||
}
|
||||
return headers
|
||||
|
||||
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
||||
generations = []
|
||||
for c in response["choices"]:
|
||||
message = _convert_dict_to_message(c["message"])
|
||||
gen = ChatGeneration(message=message)
|
||||
generations.append(gen)
|
||||
|
||||
token_usage = response["usage"]
|
||||
llm_output = {"token_usage": token_usage, "model": self.model}
|
||||
return ChatResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "yi-chat"
|
Reference in New Issue
Block a user