mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 21:43:44 +00:00
Add Gmail Agent Example (#14567)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
@@ -0,0 +1,3 @@
|
||||
from openai_functions_agent.agent import agent_executor
|
||||
|
||||
__all__ = ["agent_executor"]
|
@@ -0,0 +1,94 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
||||
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
||||
from langchain.tools.render import format_tool_to_openai_function
|
||||
from langchain_community.chat_models import ChatOpenAI
|
||||
from langchain_community.tools.gmail import (
|
||||
GmailCreateDraft,
|
||||
GmailGetMessage,
|
||||
GmailGetThread,
|
||||
GmailSearch,
|
||||
GmailSendMessage,
|
||||
)
|
||||
from langchain_community.tools.gmail.utils import build_resource_service
|
||||
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper
|
||||
from langchain_core.messages import AIMessage, HumanMessage
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.tools import tool
|
||||
|
||||
|
||||
@tool
|
||||
def search_engine(query: str, max_results: int = 5) -> str:
|
||||
""""A search engine optimized for comprehensive, accurate, \
|
||||
and trusted results. Useful for when you need to answer questions \
|
||||
about current events or about recent information. \
|
||||
Input should be a search query. \
|
||||
If the user is asking about something that you don't know about, \
|
||||
you should probably use this tool to see if that can provide any information."""
|
||||
return TavilySearchAPIWrapper().results(query, max_results=max_results)
|
||||
|
||||
|
||||
# Create the tools
|
||||
tools = [
|
||||
GmailCreateDraft(),
|
||||
GmailGetMessage(),
|
||||
GmailGetThread(),
|
||||
GmailSearch(),
|
||||
GmailSendMessage(),
|
||||
search_engine,
|
||||
]
|
||||
current_user = (
|
||||
build_resource_service().users().getProfile(userId="me").execute()["emailAddress"]
|
||||
)
|
||||
assistant_system_message = """You are a helpful assistant aiding a user with their \
|
||||
emails. Use tools (only if necessary) to best answer \
|
||||
the users questions.\n\nCurrent user: {user}"""
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", assistant_system_message),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
("user", "{input}"),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
).partial(user=current_user)
|
||||
|
||||
|
||||
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0)
|
||||
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
||||
|
||||
|
||||
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
||||
buffer = []
|
||||
for human, ai in chat_history:
|
||||
buffer.append(HumanMessage(content=human))
|
||||
buffer.append(AIMessage(content=ai))
|
||||
return buffer
|
||||
|
||||
|
||||
agent = (
|
||||
{
|
||||
"input": lambda x: x["input"],
|
||||
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
||||
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
||||
x["intermediate_steps"]
|
||||
),
|
||||
}
|
||||
| prompt
|
||||
| llm_with_tools
|
||||
| OpenAIFunctionsAgentOutputParser()
|
||||
)
|
||||
|
||||
|
||||
class AgentInput(BaseModel):
|
||||
input: str
|
||||
chat_history: List[Tuple[str, str]] = Field(
|
||||
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
||||
)
|
||||
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
||||
input_type=AgentInput
|
||||
)
|
Reference in New Issue
Block a user