mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 21:12:48 +00:00
Minor grammatical fixes (#1325)
Fixed typos and links in a few places across documents
This commit is contained in:
@@ -7,7 +7,7 @@
|
||||
"source": [
|
||||
"# LLM Serialization\n",
|
||||
"\n",
|
||||
"This notebook walks how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (eg the provider, the temperature, etc)."
|
||||
"This notebook walks through how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (e.g., the provider, the temperature, etc)."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -31,13 +31,13 @@ The examples here are all "how-to" guides for how to integrate with various LLM
|
||||
|
||||
`Forefront AI <./integrations/forefrontai_example.html>`_: Covers how to utilize the Forefront AI wrapper.
|
||||
|
||||
`PromptLayer OpenAI <./integrations/promptlayer_openai.html>`_: Covers how to use `PromptLayer <https://promptlayer.com>`_ with Langchain.
|
||||
`PromptLayer OpenAI <./integrations/promptlayer_openai.html>`_: Covers how to use `PromptLayer <https://promptlayer.com>`_ with LangChain.
|
||||
|
||||
`Anthropic <./integrations/anthropic_example.html>`_: Covers how to use Anthropic models with Langchain.
|
||||
`Anthropic <./integrations/anthropic_example.html>`_: Covers how to use Anthropic models with LangChain.
|
||||
|
||||
`DeepInfra <./integrations/deepinfra_example.html>`_: Covers how to utilize the DeepInfra wrapper.
|
||||
|
||||
`Self-Hosted Models (via Runhouse) <./integrations/self_hosted_examples.html>`_: Covers how to run models on existing or on-demand remote compute with Langchain.
|
||||
`Self-Hosted Models (via Runhouse) <./integrations/self_hosted_examples.html>`_: Covers how to run models on existing or on-demand remote compute with LangChain.
|
||||
|
||||
|
||||
.. toctree::
|
||||
|
@@ -2,9 +2,9 @@
|
||||
|
||||
## LLMs
|
||||
Wrappers around Large Language Models (in particular, the "generate" ability of large language models) are at the core of LangChain functionality.
|
||||
The core method that these classes expose is a `generate` method, which takes in a list of strings and returns an LLMResult (which contains outputs for all input strings).
|
||||
Read more about LLMResult. This interface operates over a list of strings because often the lists of strings can be batched to the LLM provider,
|
||||
providing speed and efficiency gains.
|
||||
The core method that these classes expose is a `generate` method, which takes in a list of strings and returns an LLMResult (which contains outputs for all input strings). Read more about [LLMResult](#llmresult).
|
||||
|
||||
This interface operates over a list of strings because often the lists of strings can be batched to the LLM provider, providing speed and efficiency gains.
|
||||
For convenience, this class also exposes a simpler, more user friendly interface (via `__call__`).
|
||||
The interface for this takes in a single string, and returns a single string.
|
||||
|
||||
|
Reference in New Issue
Block a user