mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-07 03:56:39 +00:00
Allow specifying custom input/output schemas for runnables with .with_types() (#12083)
<!-- Thank you for contributing to LangChain! Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes (if applicable), - **Dependencies:** any dependencies required for this change, - **Tag maintainer:** for a quicker response, tag the relevant maintainer (see below), - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/extras` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
This commit is contained in:
parent
6fcba975d0
commit
d0ce374731
@ -585,6 +585,22 @@ class Runnable(Generic[Input, Output], ABC):
|
||||
kwargs={},
|
||||
)
|
||||
|
||||
def with_types(
|
||||
self,
|
||||
*,
|
||||
input_type: Optional[Type[Input]] = None,
|
||||
output_type: Optional[Type[Output]] = None,
|
||||
) -> Runnable[Input, Output]:
|
||||
"""
|
||||
Bind input and output types to a Runnable, returning a new Runnable.
|
||||
"""
|
||||
return RunnableBinding(
|
||||
bound=self,
|
||||
custom_input_type=input_type,
|
||||
custom_output_type=output_type,
|
||||
kwargs={},
|
||||
)
|
||||
|
||||
def with_retry(
|
||||
self,
|
||||
*,
|
||||
@ -2277,6 +2293,11 @@ class RunnableEach(RunnableSerializable[List[Input], List[Output]]):
|
||||
def bind(self, **kwargs: Any) -> RunnableEach[Input, Output]:
|
||||
return RunnableEach(bound=self.bound.bind(**kwargs))
|
||||
|
||||
def with_config(
|
||||
self, config: Optional[RunnableConfig] = None, **kwargs: Any
|
||||
) -> RunnableEach[Input, Output]:
|
||||
return RunnableEach(bound=self.bound.with_config(config, **kwargs))
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
inputs: List[Input],
|
||||
@ -2321,6 +2342,10 @@ class RunnableBinding(RunnableSerializable[Input, Output]):
|
||||
|
||||
config: RunnableConfig = Field(default_factory=dict)
|
||||
|
||||
custom_input_type: Optional[Union[Type[Input], BaseModel]] = None
|
||||
|
||||
custom_output_type: Optional[Union[Type[Output], BaseModel]] = None
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@ -2330,6 +2355,8 @@ class RunnableBinding(RunnableSerializable[Input, Output]):
|
||||
bound: Runnable[Input, Output],
|
||||
kwargs: Mapping[str, Any],
|
||||
config: Optional[RunnableConfig] = None,
|
||||
custom_input_type: Optional[Union[Type[Input], BaseModel]] = None,
|
||||
custom_output_type: Optional[Union[Type[Output], BaseModel]] = None,
|
||||
**other_kwargs: Any,
|
||||
) -> None:
|
||||
config = config or {}
|
||||
@ -2342,24 +2369,43 @@ class RunnableBinding(RunnableSerializable[Input, Output]):
|
||||
f"Configurable key '{key}' not found in runnable with"
|
||||
f" config keys: {allowed_keys}"
|
||||
)
|
||||
super().__init__(bound=bound, kwargs=kwargs, config=config, **other_kwargs)
|
||||
super().__init__(
|
||||
bound=bound,
|
||||
kwargs=kwargs,
|
||||
config=config,
|
||||
custom_input_type=custom_input_type,
|
||||
custom_output_type=custom_output_type,
|
||||
**other_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def InputType(self) -> Type[Input]:
|
||||
return self.bound.InputType
|
||||
return (
|
||||
cast(Type[Input], self.custom_input_type)
|
||||
if self.custom_input_type is not None
|
||||
else self.bound.InputType
|
||||
)
|
||||
|
||||
@property
|
||||
def OutputType(self) -> Type[Output]:
|
||||
return self.bound.OutputType
|
||||
return (
|
||||
cast(Type[Output], self.custom_output_type)
|
||||
if self.custom_output_type is not None
|
||||
else self.bound.OutputType
|
||||
)
|
||||
|
||||
def get_input_schema(
|
||||
self, config: Optional[RunnableConfig] = None
|
||||
) -> Type[BaseModel]:
|
||||
if self.custom_input_type is not None:
|
||||
return super().get_input_schema(config)
|
||||
return self.bound.get_input_schema(merge_configs(self.config, config))
|
||||
|
||||
def get_output_schema(
|
||||
self, config: Optional[RunnableConfig] = None
|
||||
) -> Type[BaseModel]:
|
||||
if self.custom_output_type is not None:
|
||||
return super().get_output_schema(config)
|
||||
return self.bound.get_output_schema(merge_configs(self.config, config))
|
||||
|
||||
@property
|
||||
@ -2394,6 +2440,23 @@ class RunnableBinding(RunnableSerializable[Input, Output]):
|
||||
config=cast(RunnableConfig, {**self.config, **(config or {}), **kwargs}),
|
||||
)
|
||||
|
||||
def with_types(
|
||||
self,
|
||||
input_type: Optional[Union[Type[Input], BaseModel]] = None,
|
||||
output_type: Optional[Union[Type[Output], BaseModel]] = None,
|
||||
) -> Runnable[Input, Output]:
|
||||
return self.__class__(
|
||||
bound=self.bound,
|
||||
kwargs=self.kwargs,
|
||||
config=self.config,
|
||||
custom_input_type=input_type
|
||||
if input_type is not None
|
||||
else self.custom_input_type,
|
||||
custom_output_type=output_type
|
||||
if output_type is not None
|
||||
else self.custom_output_type,
|
||||
)
|
||||
|
||||
def with_retry(self, **kwargs: Any) -> Runnable[Input, Output]:
|
||||
return self.__class__(
|
||||
bound=self.bound.with_retry(**kwargs),
|
||||
|
@ -3747,7 +3747,9 @@
|
||||
"Thought:"
|
||||
]
|
||||
},
|
||||
"config": {}
|
||||
"config": {},
|
||||
"custom_input_type": null,
|
||||
"custom_output_type": null
|
||||
}
|
||||
},
|
||||
"llm": {
|
||||
|
@ -39,6 +39,7 @@ from langchain.prompts.chat import (
|
||||
MessagesPlaceholder,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.document import Document
|
||||
from langchain.schema.messages import (
|
||||
AIMessage,
|
||||
@ -587,6 +588,26 @@ def test_schema_complex_seq() -> None:
|
||||
"type": "string",
|
||||
}
|
||||
|
||||
assert chain2.with_types(input_type=str).input_schema.schema() == {
|
||||
"title": "RunnableBindingInput",
|
||||
"type": "string",
|
||||
}
|
||||
|
||||
assert chain2.with_types(input_type=int).output_schema.schema() == {
|
||||
"title": "StrOutputParserOutput",
|
||||
"type": "string",
|
||||
}
|
||||
|
||||
class InputType(BaseModel):
|
||||
person: str
|
||||
|
||||
assert chain2.with_types(input_type=InputType).input_schema.schema() == {
|
||||
"title": "InputType",
|
||||
"type": "object",
|
||||
"properties": {"person": {"title": "Person", "type": "string"}},
|
||||
"required": ["person"],
|
||||
}
|
||||
|
||||
|
||||
def test_schema_chains() -> None:
|
||||
model = FakeListChatModel(responses=[""])
|
||||
|
Loading…
Reference in New Issue
Block a user