diff --git a/docs/docs/how_to/index.mdx b/docs/docs/how_to/index.mdx index 673b71c18d5..1a60c637e5e 100644 --- a/docs/docs/how_to/index.mdx +++ b/docs/docs/how_to/index.mdx @@ -47,7 +47,7 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st - [How to: use chat model to call tools](/docs/how_to/tool_calling) - [How to: stream tool calls](/docs/how_to/tool_streaming) - [How to: handle rate limits](/docs/how_to/chat_model_rate_limiting) -- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot) +- [How to: few-shot prompt tool behavior](/docs/how_to/tools_few_shot) - [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific) - [How to: force a specific tool call](/docs/how_to/tool_choice) - [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/) @@ -64,8 +64,8 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st [Prompt Templates](/docs/concepts/prompt_templates) are responsible for formatting user input into a format that can be passed to a language model. -- [How to: use few shot examples](/docs/how_to/few_shot_examples) -- [How to: use few shot examples in chat models](/docs/how_to/few_shot_examples_chat/) +- [How to: use few-shot examples](/docs/how_to/few_shot_examples) +- [How to: use few-shot examples in chat models](/docs/how_to/few_shot_examples_chat/) - [How to: partially format prompt templates](/docs/how_to/prompts_partial) - [How to: compose prompts together](/docs/how_to/prompts_composition) - [How to: use multimodal prompts](/docs/how_to/multimodal_prompts/) @@ -168,7 +168,7 @@ See [supported integrations](/docs/integrations/vectorstores/) for details on ge Indexing is the process of keeping your vectorstore in-sync with the underlying data source. -- [How to: reindex data to keep your vectorstore in-sync with the underlying data source](/docs/how_to/indexing) +- [How to: reindex data to keep your vectorstore in sync with the underlying data source](/docs/how_to/indexing) ### Tools @@ -178,7 +178,7 @@ LangChain [Tools](/docs/concepts/tools) contain a description of the tool (to pa - [How to: use built-in tools and toolkits](/docs/how_to/tools_builtin) - [How to: use chat models to call tools](/docs/how_to/tool_calling) - [How to: pass tool outputs to chat models](/docs/how_to/tool_results_pass_to_model) -- [How to: pass run time values to tools](/docs/how_to/tool_runtime) +- [How to: pass runtime values to tools](/docs/how_to/tool_runtime) - [How to: add a human-in-the-loop for tools](/docs/how_to/tools_human) - [How to: handle tool errors](/docs/how_to/tools_error) - [How to: force models to call a tool](/docs/how_to/tool_choice) @@ -297,7 +297,7 @@ For a high-level tutorial, check out [this guide](/docs/tutorials/sql_qa/). You can use an LLM to do question answering over graph databases. For a high-level tutorial, check out [this guide](/docs/tutorials/graph/). -- [How to: add a semantic layer over the database](/docs/how_to/graph_semantic) +- [How to: add a semantic layer over a database](/docs/how_to/graph_semantic) - [How to: construct knowledge graphs](/docs/how_to/graph_constructing) ### Summarization diff --git a/docs/docs/integrations/chat/ollama.ipynb b/docs/docs/integrations/chat/ollama.ipynb index c9441b46c51..52f93087a72 100644 --- a/docs/docs/integrations/chat/ollama.ipynb +++ b/docs/docs/integrations/chat/ollama.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatOllama\n", "\n", - "[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `got-oss`, locally.\n", + "[Ollama](https://ollama.com/) allows you to run open-source large language models, such as `gpt-oss`, locally.\n", "\n", "`ollama` bundles model weights, configuration, and data into a single package, defined by a Modelfile.\n", "\n", diff --git a/docs/docusaurus.config.js b/docs/docusaurus.config.js index c076c78024e..700338bc495 100644 --- a/docs/docusaurus.config.js +++ b/docs/docusaurus.config.js @@ -142,8 +142,7 @@ const config = { respectPrefersColorScheme: true, }, announcementBar: { - content: - 'Our Building Ambient Agents with LangGraph course is now available on LangChain Academy!', + content: "Our new LangChain Academy Course Deep Research with LangGraph is now live! Enroll for free.", backgroundColor: "#d0c9fe", }, prism: { diff --git a/libs/core/README.md b/libs/core/README.md index fb09de946ec..50b9ebf27aa 100644 --- a/libs/core/README.md +++ b/libs/core/README.md @@ -21,13 +21,13 @@ For full documentation see the [API reference](https://python.langchain.com/api_ ## 1️⃣ Core Interface: Runnables -The concept of a Runnable is central to LangChain Core – it is the interface that most LangChain Core components implement, giving them +The concept of a `Runnable` is central to LangChain Core – it is the interface that most LangChain Core components implement, giving them -- a common invocation interface (invoke, batch, stream, etc.) +- a common invocation interface (`invoke()`, `batch()`, `stream()`, etc.) - built-in utilities for retries, fallbacks, schemas and runtime configurability -- easy deployment with [LangServe](https://github.com/langchain-ai/langserve) +- easy deployment with [LangGraph](https://github.com/langchain-ai/langgraph) -For more check out the [runnable docs](https://python.langchain.com/docs/expression_language/interface). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers. +For more check out the [runnable docs](https://python.langchain.com/docs/concepts/runnables/). Examples of components that implement the interface include: LLMs, Chat Models, Prompts, Retrievers, Tools, Output Parsers. You can use LangChain Core objects in two ways: @@ -51,7 +51,7 @@ LangChain Expression Language (LCEL) is a _declarative language_ for composing L LangChain Core compiles LCEL sequences to an _optimized execution plan_, with automatic parallelization, streaming, tracing, and async support. -For more check out the [LCEL docs](https://python.langchain.com/docs/expression_language/). +For more check out the [LCEL docs](https://python.langchain.com/docs/concepts/lcel/). ![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/svg/langchain_stack_112024.svg "LangChain Framework Overview") @@ -59,8 +59,6 @@ For more advanced use cases, also check out [LangGraph](https://github.com/langc ## 📕 Releases & Versioning -`langchain-core` is currently on version `0.1.x`. - As `langchain-core` contains the base abstractions and runtime for the whole LangChain ecosystem, we will communicate any breaking changes with advance notice and version bumps. The exception for this is anything in `langchain_core.beta`. The reason for `langchain_core.beta` is that given the rate of change of the field, being able to move quickly is still a priority, and this module is our attempt to do so. Minor version increases will occur for: diff --git a/libs/langchain/README.md b/libs/langchain/README.md index ec2870ae6cf..a1fd0a5e7d7 100644 --- a/libs/langchain/README.md +++ b/libs/langchain/README.md @@ -3,28 +3,21 @@ ⚡ Building applications with LLMs through composability ⚡ [![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/releases) -[![lint](https://github.com/langchain-ai/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/lint.yml) -[![test](https://github.com/langchain-ai/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/test.yml) [![Downloads](https://static.pepy.tech/badge/langchain/month)](https://pepy.tech/project/langchain) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain) [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain) [![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=social)](https://star-history.com/#langchain-ai/langchain) -[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain) -[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/issues) Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs). To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com). [LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications. -Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team. ## Quick Install `pip install langchain` -or -`pip install langsmith && conda install langchain -c conda-forge` ## 🤔 What is this? @@ -34,22 +27,22 @@ This library aims to assist in the development of those types of applications. C **❓ Question answering with RAG** -- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/) +- [Documentation](https://python.langchain.com/docs/tutorials/rag/) - End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain) **🧱 Extracting structured output** -- [Documentation](https://python.langchain.com/docs/use_cases/extraction/) +- [Documentation](https://python.langchain.com/docs/tutorials/extraction/) - End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/) **🤖 Chatbots** -- [Documentation](https://python.langchain.com/docs/use_cases/chatbots) +- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/) - End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain) ## 📖 Documentation -Please see [here](https://python.langchain.com) for full documentation on: +Please see [our full documentation](https://python.langchain.com) on: - Getting started (installation, setting up the environment, simple examples) - How-To examples (demos, integrations, helper functions) @@ -79,7 +72,7 @@ Agents involve an LLM making decisions about which Actions to take, taking that **🧐 Evaluation:** -[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this. +Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this. For more information on these concepts, please see our [full documentation](https://python.langchain.com). diff --git a/libs/langchain_v1/README.md b/libs/langchain_v1/README.md index ec2870ae6cf..a1fd0a5e7d7 100644 --- a/libs/langchain_v1/README.md +++ b/libs/langchain_v1/README.md @@ -3,28 +3,21 @@ ⚡ Building applications with LLMs through composability ⚡ [![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/releases) -[![lint](https://github.com/langchain-ai/langchain/actions/workflows/lint.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/lint.yml) -[![test](https://github.com/langchain-ai/langchain/actions/workflows/test.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/test.yml) [![Downloads](https://static.pepy.tech/badge/langchain/month)](https://pepy.tech/project/langchain) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai) [![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/langchain-ai/langchain) [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/langchain-ai/langchain) [![GitHub star chart](https://img.shields.io/github/stars/langchain-ai/langchain?style=social)](https://star-history.com/#langchain-ai/langchain) -[![Dependency Status](https://img.shields.io/librariesio/github/langchain-ai/langchain)](https://libraries.io/github/langchain-ai/langchain) -[![Open Issues](https://img.shields.io/github/issues-raw/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/issues) Looking for the JS/TS version? Check out [LangChain.js](https://github.com/langchain-ai/langchainjs). To help you ship LangChain apps to production faster, check out [LangSmith](https://smith.langchain.com). [LangSmith](https://smith.langchain.com) is a unified developer platform for building, testing, and monitoring LLM applications. -Fill out [this form](https://www.langchain.com/contact-sales) to speak with our sales team. ## Quick Install `pip install langchain` -or -`pip install langsmith && conda install langchain -c conda-forge` ## 🤔 What is this? @@ -34,22 +27,22 @@ This library aims to assist in the development of those types of applications. C **❓ Question answering with RAG** -- [Documentation](https://python.langchain.com/docs/use_cases/question_answering/) +- [Documentation](https://python.langchain.com/docs/tutorials/rag/) - End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain) **🧱 Extracting structured output** -- [Documentation](https://python.langchain.com/docs/use_cases/extraction/) +- [Documentation](https://python.langchain.com/docs/tutorials/extraction/) - End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/) **🤖 Chatbots** -- [Documentation](https://python.langchain.com/docs/use_cases/chatbots) +- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/) - End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain) ## 📖 Documentation -Please see [here](https://python.langchain.com) for full documentation on: +Please see [our full documentation](https://python.langchain.com) on: - Getting started (installation, setting up the environment, simple examples) - How-To examples (demos, integrations, helper functions) @@ -79,7 +72,7 @@ Agents involve an LLM making decisions about which Actions to take, taking that **🧐 Evaluation:** -[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this. +Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this. For more information on these concepts, please see our [full documentation](https://python.langchain.com). diff --git a/libs/standard-tests/README.md b/libs/standard-tests/README.md index fe34759e3ac..b30f9fdbf2c 100644 --- a/libs/standard-tests/README.md +++ b/libs/standard-tests/README.md @@ -18,12 +18,6 @@ Pip: pip install -U langchain-tests ``` -Poetry: - -```bash -poetry add langchain-tests -``` - uv: ```bash diff --git a/libs/text-splitters/README.md b/libs/text-splitters/README.md index fbbfc34f5d6..4c1a04785ae 100644 --- a/libs/text-splitters/README.md +++ b/libs/text-splitters/README.md @@ -14,12 +14,10 @@ pip install langchain-text-splitters LangChain Text Splitters contains utilities for splitting into chunks a wide variety of text documents. For full documentation see the [API reference](https://python.langchain.com/api_reference/text_splitters/index.html) -and the [Text Splitters](https://python.langchain.com/docs/modules/data_connection/document_transformers/) module in the main docs. +and the [Text Splitters](https://python.langchain.com/docs/how_to/#text-splitters) module in the main docs. ## 📕 Releases & Versioning -`langchain-text-splitters` is currently on version `0.0.x`. - Minor version increases will occur for: - Breaking changes for any public interfaces NOT marked `beta`