mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 19:12:42 +00:00
Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the query pass the to retriever. It can be used to pre-process the user input in any way. The default prompt: ``` DEFAULT_QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an assistant tasked with taking a natural languge query from a user and converting it into a query for a vectorstore. In this process, you strip out information that is not relevant for the retrieval task. Here is the user query: {question} """ ) ``` --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
@@ -42,6 +42,7 @@ from langchain.retrievers.milvus import MilvusRetriever
|
||||
from langchain.retrievers.multi_query import MultiQueryRetriever
|
||||
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
|
||||
from langchain.retrievers.pubmed import PubMedRetriever
|
||||
from langchain.retrievers.re_phraser import RePhraseQueryRetriever
|
||||
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
|
||||
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
||||
from langchain.retrievers.svm import SVMRetriever
|
||||
@@ -86,6 +87,7 @@ __all__ = [
|
||||
"ZepRetriever",
|
||||
"ZillizRetriever",
|
||||
"DocArrayRetriever",
|
||||
"RePhraseQueryRetriever",
|
||||
"WebResearchRetriever",
|
||||
"EnsembleRetriever",
|
||||
]
|
||||
|
87
libs/langchain/langchain/retrievers/re_phraser.py
Normal file
87
libs/langchain/langchain/retrievers/re_phraser.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForRetrieverRun,
|
||||
CallbackManagerForRetrieverRun,
|
||||
)
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Default template
|
||||
DEFAULT_TEMPLATE = """You are an assistant tasked with taking a natural language \
|
||||
query from a user and converting it into a query for a vectorstore. \
|
||||
In this process, you strip out information that is not relevant for \
|
||||
the retrieval task. Here is the user query: {question}"""
|
||||
|
||||
# Default prompt
|
||||
DEFAULT_QUERY_PROMPT = PromptTemplate.from_template(DEFAULT_TEMPLATE)
|
||||
|
||||
|
||||
class RePhraseQueryRetriever(BaseRetriever):
|
||||
|
||||
"""Given a user query, use an LLM to re-phrase it.
|
||||
Then, retrieve docs for re-phrased query."""
|
||||
|
||||
retriever: BaseRetriever
|
||||
llm_chain: LLMChain
|
||||
|
||||
@classmethod
|
||||
def from_llm(
|
||||
cls,
|
||||
retriever: BaseRetriever,
|
||||
llm: BaseLLM,
|
||||
prompt: PromptTemplate = DEFAULT_QUERY_PROMPT,
|
||||
) -> "RePhraseQueryRetriever":
|
||||
"""Initialize from llm using default template.
|
||||
|
||||
The prompt used here expects a single input: `question`
|
||||
|
||||
Args:
|
||||
retriever: retriever to query documents from
|
||||
llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
||||
prompt: prompt template for query generation
|
||||
|
||||
Returns:
|
||||
RePhraseQueryRetriever
|
||||
"""
|
||||
|
||||
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||||
return cls(
|
||||
retriever=retriever,
|
||||
llm_chain=llm_chain,
|
||||
)
|
||||
|
||||
def _get_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: CallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
"""Get relevated documents given a user question.
|
||||
|
||||
Args:
|
||||
query: user question
|
||||
|
||||
Returns:
|
||||
Relevant documents for re-phrased question
|
||||
"""
|
||||
response = self.llm_chain(query, callbacks=run_manager.get_child())
|
||||
re_phrased_question = response["text"]
|
||||
logger.info(f"Re-phrased question: {re_phrased_question}")
|
||||
docs = self.retriever.get_relevant_documents(
|
||||
re_phrased_question, callbacks=run_manager.get_child()
|
||||
)
|
||||
return docs
|
||||
|
||||
async def _aget_relevant_documents(
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
run_manager: AsyncCallbackManagerForRetrieverRun,
|
||||
) -> List[Document]:
|
||||
raise NotImplementedError
|
Reference in New Issue
Block a user