mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 05:43:55 +00:00
Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the query pass the to retriever. It can be used to pre-process the user input in any way. The default prompt: ``` DEFAULT_QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an assistant tasked with taking a natural languge query from a user and converting it into a query for a vectorstore. In this process, you strip out information that is not relevant for the retrieval task. Here is the user query: {question} """ ) ``` --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
6c3573e7f6
commit
d1b95db874
222
docs/extras/integrations/retrievers/re_phrase.ipynb
Normal file
222
docs/extras/integrations/retrievers/re_phrase.ipynb
Normal file
@ -0,0 +1,222 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "e8624be2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# RePhraseQueryRetriever\n",
|
||||||
|
"\n",
|
||||||
|
"Simple retriever that applies an LLM between the user input and the query pass the to retriever.\n",
|
||||||
|
"\n",
|
||||||
|
"It can be used to pre-process the user input in any way.\n",
|
||||||
|
"\n",
|
||||||
|
"The default prompt used in the `from_llm` classmethod:\n",
|
||||||
|
"\n",
|
||||||
|
"```\n",
|
||||||
|
"DEFAULT_TEMPLATE = \"\"\"You are an assistant tasked with taking a natural language \\\n",
|
||||||
|
"query from a user and converting it into a query for a vectorstore. \\\n",
|
||||||
|
"In this process, you strip out information that is not relevant for \\\n",
|
||||||
|
"the retrieval task. Here is the user query: {question}\"\"\"\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"Create a vectorstore."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "1bfa6834",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.document_loaders import WebBaseLoader\n",
|
||||||
|
"\n",
|
||||||
|
"loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n",
|
||||||
|
"data = loader.load()\n",
|
||||||
|
"\n",
|
||||||
|
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||||
|
"\n",
|
||||||
|
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)\n",
|
||||||
|
"all_splits = text_splitter.split_documents(data)\n",
|
||||||
|
"\n",
|
||||||
|
"from langchain.vectorstores import Chroma\n",
|
||||||
|
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||||
|
"\n",
|
||||||
|
"vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "d0b51556",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import logging\n",
|
||||||
|
"\n",
|
||||||
|
"logging.basicConfig()\n",
|
||||||
|
"logging.getLogger(\"langchain.retrievers.re_phraser\").setLevel(logging.INFO)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "20e1e787",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
|
"from langchain.retrievers import RePhraseQueryRetriever"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "88c0a972",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Using the default prompt"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "503994bd",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"llm = ChatOpenAI(temperature=0)\n",
|
||||||
|
"retriever_from_llm = RePhraseQueryRetriever.from_llm(\n",
|
||||||
|
" retriever=vectorstore.as_retriever(), llm=llm\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"id": "8d17ecc9",
|
||||||
|
"metadata": {
|
||||||
|
"scrolled": false
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"INFO:langchain.retrievers.re_phraser:Re-phrased question: The user query can be converted into a query for a vectorstore as follows:\n",
|
||||||
|
"\n",
|
||||||
|
"\"approaches to Task Decomposition\"\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"docs = retriever_from_llm.get_relevant_documents(\n",
|
||||||
|
" \"Hi I'm Lance. What are the approaches to Task Decomposition?\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "76d54f1a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"INFO:langchain.retrievers.re_phraser:Re-phrased question: Query for vectorstore: \"Types of Memory\"\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"docs = retriever_from_llm.get_relevant_documents(\n",
|
||||||
|
" \"I live in San Francisco. What are the Types of Memory?\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "0513a6e2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Supply a prompt"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "410d6a64",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain import LLMChain\n",
|
||||||
|
"from langchain.prompts import PromptTemplate\n",
|
||||||
|
"\n",
|
||||||
|
"QUERY_PROMPT = PromptTemplate(\n",
|
||||||
|
" input_variables=[\"question\"],\n",
|
||||||
|
" template=\"\"\"You are an assistant tasked with taking a natural languge query from a user\n",
|
||||||
|
" and converting it into a query for a vectorstore. In the process, strip out all \n",
|
||||||
|
" information that is not relevant for the retrieval task and return a new, simplified\n",
|
||||||
|
" question for vectorstore retrieval. The new user query should be in pirate speech.\n",
|
||||||
|
" Here is the user query: {question} \"\"\",\n",
|
||||||
|
")\n",
|
||||||
|
"llm = ChatOpenAI(temperature=0)\n",
|
||||||
|
"llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "2dbffdd3",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"retriever_from_llm_chain = RePhraseQueryRetriever(\n",
|
||||||
|
" retriever=vectorstore.as_retriever(), llm_chain=llm_chain\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "103b4be3",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"INFO:langchain.retrievers.re_phraser:Re-phrased question: Ahoy matey! What be Maximum Inner Product Search, ye scurvy dog?\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"docs = retriever_from_llm_chain.get_relevant_documents(\n",
|
||||||
|
" \"Hi I'm Lance. What is Maximum Inner Product Search?\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -42,6 +42,7 @@ from langchain.retrievers.milvus import MilvusRetriever
|
|||||||
from langchain.retrievers.multi_query import MultiQueryRetriever
|
from langchain.retrievers.multi_query import MultiQueryRetriever
|
||||||
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
|
from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever
|
||||||
from langchain.retrievers.pubmed import PubMedRetriever
|
from langchain.retrievers.pubmed import PubMedRetriever
|
||||||
|
from langchain.retrievers.re_phraser import RePhraseQueryRetriever
|
||||||
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
|
from langchain.retrievers.remote_retriever import RemoteLangChainRetriever
|
||||||
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
||||||
from langchain.retrievers.svm import SVMRetriever
|
from langchain.retrievers.svm import SVMRetriever
|
||||||
@ -86,6 +87,7 @@ __all__ = [
|
|||||||
"ZepRetriever",
|
"ZepRetriever",
|
||||||
"ZillizRetriever",
|
"ZillizRetriever",
|
||||||
"DocArrayRetriever",
|
"DocArrayRetriever",
|
||||||
|
"RePhraseQueryRetriever",
|
||||||
"WebResearchRetriever",
|
"WebResearchRetriever",
|
||||||
"EnsembleRetriever",
|
"EnsembleRetriever",
|
||||||
]
|
]
|
||||||
|
87
libs/langchain/langchain/retrievers/re_phraser.py
Normal file
87
libs/langchain/langchain/retrievers/re_phraser.py
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
import logging
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from langchain.callbacks.manager import (
|
||||||
|
AsyncCallbackManagerForRetrieverRun,
|
||||||
|
CallbackManagerForRetrieverRun,
|
||||||
|
)
|
||||||
|
from langchain.chains.llm import LLMChain
|
||||||
|
from langchain.llms.base import BaseLLM
|
||||||
|
from langchain.prompts.prompt import PromptTemplate
|
||||||
|
from langchain.schema import BaseRetriever, Document
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Default template
|
||||||
|
DEFAULT_TEMPLATE = """You are an assistant tasked with taking a natural language \
|
||||||
|
query from a user and converting it into a query for a vectorstore. \
|
||||||
|
In this process, you strip out information that is not relevant for \
|
||||||
|
the retrieval task. Here is the user query: {question}"""
|
||||||
|
|
||||||
|
# Default prompt
|
||||||
|
DEFAULT_QUERY_PROMPT = PromptTemplate.from_template(DEFAULT_TEMPLATE)
|
||||||
|
|
||||||
|
|
||||||
|
class RePhraseQueryRetriever(BaseRetriever):
|
||||||
|
|
||||||
|
"""Given a user query, use an LLM to re-phrase it.
|
||||||
|
Then, retrieve docs for re-phrased query."""
|
||||||
|
|
||||||
|
retriever: BaseRetriever
|
||||||
|
llm_chain: LLMChain
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_llm(
|
||||||
|
cls,
|
||||||
|
retriever: BaseRetriever,
|
||||||
|
llm: BaseLLM,
|
||||||
|
prompt: PromptTemplate = DEFAULT_QUERY_PROMPT,
|
||||||
|
) -> "RePhraseQueryRetriever":
|
||||||
|
"""Initialize from llm using default template.
|
||||||
|
|
||||||
|
The prompt used here expects a single input: `question`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
retriever: retriever to query documents from
|
||||||
|
llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
||||||
|
prompt: prompt template for query generation
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
RePhraseQueryRetriever
|
||||||
|
"""
|
||||||
|
|
||||||
|
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||||||
|
return cls(
|
||||||
|
retriever=retriever,
|
||||||
|
llm_chain=llm_chain,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_relevant_documents(
|
||||||
|
self,
|
||||||
|
query: str,
|
||||||
|
*,
|
||||||
|
run_manager: CallbackManagerForRetrieverRun,
|
||||||
|
) -> List[Document]:
|
||||||
|
"""Get relevated documents given a user question.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query: user question
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Relevant documents for re-phrased question
|
||||||
|
"""
|
||||||
|
response = self.llm_chain(query, callbacks=run_manager.get_child())
|
||||||
|
re_phrased_question = response["text"]
|
||||||
|
logger.info(f"Re-phrased question: {re_phrased_question}")
|
||||||
|
docs = self.retriever.get_relevant_documents(
|
||||||
|
re_phrased_question, callbacks=run_manager.get_child()
|
||||||
|
)
|
||||||
|
return docs
|
||||||
|
|
||||||
|
async def _aget_relevant_documents(
|
||||||
|
self,
|
||||||
|
query: str,
|
||||||
|
*,
|
||||||
|
run_manager: AsyncCallbackManagerForRetrieverRun,
|
||||||
|
) -> List[Document]:
|
||||||
|
raise NotImplementedError
|
Loading…
Reference in New Issue
Block a user