mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-04 20:28:10 +00:00
added a multiturn search based on Vertex AI Search (#11885)
Replace this entire comment with: - **Description:** Added a retriever based on multi-turn Vertex AI Search - **Twitter handle:** lkuligin
This commit is contained in:
parent
38ed55245f
commit
d269dd2e2f
@ -161,7 +161,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.retrievers import GoogleVertexAISearchRetriever\n",
|
||||
"from langchain.retrievers import GoogleVertexAISearchRetriever, GoogleVertexAIMultiTurnSearchRetriever\n",
|
||||
"\n",
|
||||
"PROJECT_ID = \"<YOUR PROJECT ID>\" # Set to your Project ID\n",
|
||||
"LOCATION_ID = \"<YOUR LOCATION>\" # Set to your data store location\n",
|
||||
@ -247,6 +247,37 @@
|
||||
"for doc in result:\n",
|
||||
" print(doc)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure and use the retrieve for multi-turn search"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Search with follow-ups is [based](https://cloud.google.com/generative-ai-app-builder/docs/multi-turn-search) on generative AI models and it is different from the regular unstructured data search."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"retriever = GoogleVertexAIMultiTurnSearchRetriever(\n",
|
||||
" project_id=PROJECT_ID,\n",
|
||||
" location_id=LOCATION_ID,\n",
|
||||
" data_store_id=DATA_STORE_ID\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"result = retriever.get_relevant_documents(query)\n",
|
||||
"for doc in result:\n",
|
||||
" print(doc)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -35,6 +35,7 @@ from langchain.retrievers.google_cloud_enterprise_search import (
|
||||
GoogleCloudEnterpriseSearchRetriever,
|
||||
)
|
||||
from langchain.retrievers.google_vertex_ai_search import (
|
||||
GoogleVertexAIMultiTurnSearchRetriever,
|
||||
GoogleVertexAISearchRetriever,
|
||||
)
|
||||
from langchain.retrievers.kay import KayAiRetriever
|
||||
@ -79,6 +80,7 @@ __all__ = [
|
||||
"ElasticSearchBM25Retriever",
|
||||
"GoogleDocumentAIWarehouseRetriever",
|
||||
"GoogleCloudEnterpriseSearchRetriever",
|
||||
"GoogleVertexAIMultiTurnSearchRetriever",
|
||||
"GoogleVertexAISearchRetriever",
|
||||
"KayAiRetriever",
|
||||
"KNNRetriever",
|
||||
|
@ -4,88 +4,32 @@ from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
|
||||
from langchain.pydantic_v1 import Extra, Field, root_validator
|
||||
from langchain.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from google.api_core.client_options import ClientOptions
|
||||
from google.cloud.discoveryengine_v1beta import (
|
||||
ConversationalSearchServiceClient,
|
||||
SearchRequest,
|
||||
SearchResult,
|
||||
SearchServiceClient,
|
||||
)
|
||||
|
||||
|
||||
class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
"""`Google Vertex AI Search` retriever.
|
||||
|
||||
For a detailed explanation of the Vertex AI Search concepts
|
||||
and configuration parameters, refer to the product documentation.
|
||||
https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
|
||||
"""
|
||||
|
||||
class _BaseGoogleVertexAISearchRetriever(BaseModel):
|
||||
project_id: str
|
||||
"""Google Cloud Project ID."""
|
||||
data_store_id: str
|
||||
"""Vertex AI Search data store ID."""
|
||||
serving_config_id: str = "default_config"
|
||||
"""Vertex AI Search serving config ID."""
|
||||
location_id: str = "global"
|
||||
"""Vertex AI Search data store location."""
|
||||
filter: Optional[str] = None
|
||||
"""Filter expression."""
|
||||
get_extractive_answers: bool = False
|
||||
"""If True return Extractive Answers, otherwise return Extractive Segments."""
|
||||
max_documents: int = Field(default=5, ge=1, le=100)
|
||||
"""The maximum number of documents to return."""
|
||||
max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
|
||||
"""The maximum number of extractive answers returned in each search result.
|
||||
At most 5 answers will be returned for each SearchResult.
|
||||
"""
|
||||
max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
|
||||
"""The maximum number of extractive segments returned in each search result.
|
||||
Currently one segment will be returned for each SearchResult.
|
||||
"""
|
||||
query_expansion_condition: int = Field(default=1, ge=0, le=2)
|
||||
"""Specification to determine under which conditions query expansion should occur.
|
||||
0 - Unspecified query expansion condition. In this case, server behavior defaults
|
||||
to disabled
|
||||
1 - Disabled query expansion. Only the exact search query is used, even if
|
||||
SearchResponse.total_size is zero.
|
||||
2 - Automatic query expansion built by the Search API.
|
||||
"""
|
||||
spell_correction_mode: int = Field(default=2, ge=0, le=2)
|
||||
"""Specification to determine under which conditions query expansion should occur.
|
||||
0 - Unspecified spell correction mode. In this case, server behavior defaults
|
||||
to auto.
|
||||
1 - Suggestion only. Search API will try to find a spell suggestion if there is any
|
||||
and put in the `SearchResponse.corrected_query`.
|
||||
The spell suggestion will not be used as the search query.
|
||||
2 - Automatic spell correction built by the Search API.
|
||||
Search will be based on the corrected query if found.
|
||||
"""
|
||||
credentials: Any = None
|
||||
"""The default custom credentials (google.auth.credentials.Credentials) to use
|
||||
when making API calls. If not provided, credentials will be ascertained from
|
||||
the environment."""
|
||||
|
||||
# TODO: Add extra data type handling for type website
|
||||
engine_data_type: int = Field(default=0, ge=0, le=1)
|
||||
""" Defines the Vertex AI Search data type
|
||||
0 - Unstructured data
|
||||
1 - Structured data
|
||||
"""
|
||||
|
||||
_client: SearchServiceClient
|
||||
_serving_config: str
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.ignore
|
||||
arbitrary_types_allowed = True
|
||||
underscore_attrs_are_private = True
|
||||
|
||||
@root_validator(pre=True)
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validates the environment."""
|
||||
@ -94,9 +38,9 @@ class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"google.cloud.discoveryengine is not installed."
|
||||
"Please install it with pip install google-cloud-discoveryengine"
|
||||
"Please install it with pip install "
|
||||
"google-cloud-discoveryengine>=0.11.0"
|
||||
) from exc
|
||||
|
||||
try:
|
||||
from google.api_core.exceptions import InvalidArgument # noqa: F401
|
||||
except ImportError as exc:
|
||||
@ -130,87 +74,16 @@ class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
|
||||
return values
|
||||
|
||||
def __init__(self, **data: Any) -> None:
|
||||
"""Initializes private fields."""
|
||||
try:
|
||||
from google.cloud.discoveryengine_v1beta import SearchServiceClient
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"google.cloud.discoveryengine is not installed."
|
||||
"Please install it with pip install google-cloud-discoveryengine"
|
||||
) from exc
|
||||
try:
|
||||
from google.api_core.client_options import ClientOptions
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"google.api_core.client_options is not installed."
|
||||
"Please install it with pip install google-api-core"
|
||||
) from exc
|
||||
@property
|
||||
def client_options(self) -> "ClientOptions":
|
||||
from google.api_core.client_options import ClientOptions
|
||||
|
||||
super().__init__(**data)
|
||||
|
||||
# For more information, refer to:
|
||||
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
|
||||
api_endpoint = (
|
||||
"discoveryengine.googleapis.com"
|
||||
if self.location_id == "global"
|
||||
else f"{self.location_id}-discoveryengine.googleapis.com"
|
||||
return ClientOptions(
|
||||
api_endpoint=f"{self.location_id}-discoveryengine.googleapis.com"
|
||||
if self.location_id != "global"
|
||||
else None
|
||||
)
|
||||
|
||||
self._client = SearchServiceClient(
|
||||
credentials=self.credentials,
|
||||
client_options=ClientOptions(api_endpoint=api_endpoint),
|
||||
)
|
||||
|
||||
self._serving_config = self._client.serving_config_path(
|
||||
project=self.project_id,
|
||||
location=self.location_id,
|
||||
data_store=self.data_store_id,
|
||||
serving_config=self.serving_config_id,
|
||||
)
|
||||
|
||||
def _convert_unstructured_search_response(
|
||||
self, results: Sequence[SearchResult]
|
||||
) -> List[Document]:
|
||||
"""Converts a sequence of search results to a list of LangChain documents."""
|
||||
from google.protobuf.json_format import MessageToDict
|
||||
|
||||
documents: List[Document] = []
|
||||
|
||||
for result in results:
|
||||
document_dict = MessageToDict(
|
||||
result.document._pb, preserving_proto_field_name=True
|
||||
)
|
||||
derived_struct_data = document_dict.get("derived_struct_data")
|
||||
if not derived_struct_data:
|
||||
continue
|
||||
|
||||
doc_metadata = document_dict.get("struct_data", {})
|
||||
doc_metadata["id"] = document_dict["id"]
|
||||
|
||||
chunk_type = (
|
||||
"extractive_answers"
|
||||
if self.get_extractive_answers
|
||||
else "extractive_segments"
|
||||
)
|
||||
|
||||
if chunk_type not in derived_struct_data:
|
||||
continue
|
||||
|
||||
for chunk in derived_struct_data[chunk_type]:
|
||||
doc_metadata["source"] = derived_struct_data.get("link", "")
|
||||
|
||||
if chunk_type == "extractive_answers":
|
||||
doc_metadata["source"] += f":{chunk.get('pageNumber', '')}"
|
||||
|
||||
documents.append(
|
||||
Document(
|
||||
page_content=chunk.get("content", ""), metadata=doc_metadata
|
||||
)
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
def _convert_structured_search_response(
|
||||
self, results: Sequence[SearchResult]
|
||||
) -> List[Document]:
|
||||
@ -235,6 +108,128 @@ class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
|
||||
return documents
|
||||
|
||||
def _convert_unstructured_search_response(
|
||||
self, results: Sequence[SearchResult], chunk_type: str
|
||||
) -> List[Document]:
|
||||
"""Converts a sequence of search results to a list of LangChain documents."""
|
||||
from google.protobuf.json_format import MessageToDict
|
||||
|
||||
documents: List[Document] = []
|
||||
|
||||
for result in results:
|
||||
document_dict = MessageToDict(
|
||||
result.document._pb, preserving_proto_field_name=True
|
||||
)
|
||||
derived_struct_data = document_dict.get("derived_struct_data")
|
||||
if not derived_struct_data:
|
||||
continue
|
||||
|
||||
doc_metadata = document_dict.get("struct_data", {})
|
||||
doc_metadata["id"] = document_dict["id"]
|
||||
|
||||
if chunk_type not in derived_struct_data:
|
||||
continue
|
||||
|
||||
for chunk in derived_struct_data[chunk_type]:
|
||||
doc_metadata["source"] = derived_struct_data.get("link", "")
|
||||
|
||||
if chunk_type == "extractive_answers":
|
||||
doc_metadata["source"] += f":{chunk.get('pageNumber', '')}"
|
||||
|
||||
documents.append(
|
||||
Document(
|
||||
page_content=chunk.get("content", ""), metadata=doc_metadata
|
||||
)
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
|
||||
class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetriever):
|
||||
"""`Google Vertex AI Search` retriever.
|
||||
|
||||
For a detailed explanation of the Vertex AI Search concepts
|
||||
and configuration parameters, refer to the product documentation.
|
||||
https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
|
||||
"""
|
||||
|
||||
serving_config_id: str = "default_config"
|
||||
"""Vertex AI Search serving config ID."""
|
||||
filter: Optional[str] = None
|
||||
"""Filter expression."""
|
||||
get_extractive_answers: bool = False
|
||||
"""If True return Extractive Answers, otherwise return Extractive Segments."""
|
||||
max_documents: int = Field(default=5, ge=1, le=100)
|
||||
"""The maximum number of documents to return."""
|
||||
max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
|
||||
"""The maximum number of extractive answers returned in each search result.
|
||||
At most 5 answers will be returned for each SearchResult.
|
||||
"""
|
||||
max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
|
||||
"""The maximum number of extractive segments returned in each search result.
|
||||
Currently one segment will be returned for each SearchResult.
|
||||
"""
|
||||
query_expansion_condition: int = Field(default=1, ge=0, le=2)
|
||||
"""Specification to determine under which conditions query expansion should occur.
|
||||
0 - Unspecified query expansion condition. In this case, server behavior defaults
|
||||
to disabled
|
||||
1 - Disabled query expansion. Only the exact search query is used, even if
|
||||
SearchResponse.total_size is zero.
|
||||
2 - Automatic query expansion built by the Search API.
|
||||
"""
|
||||
spell_correction_mode: int = Field(default=2, ge=0, le=2)
|
||||
"""Specification to determine under which conditions query expansion should occur.
|
||||
0 - Unspecified spell correction mode. In this case, server behavior defaults
|
||||
to auto.
|
||||
1 - Suggestion only. Search API will try to find a spell suggestion if there is any
|
||||
and put in the `SearchResponse.corrected_query`.
|
||||
The spell suggestion will not be used as the search query.
|
||||
2 - Automatic spell correction built by the Search API.
|
||||
Search will be based on the corrected query if found.
|
||||
"""
|
||||
|
||||
# TODO: Add extra data type handling for type website
|
||||
engine_data_type: int = Field(default=0, ge=0, le=1)
|
||||
""" Defines the Vertex AI Search data type
|
||||
0 - Unstructured data
|
||||
1 - Structured data
|
||||
"""
|
||||
|
||||
_client: SearchServiceClient
|
||||
_serving_config: str
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.ignore
|
||||
arbitrary_types_allowed = True
|
||||
underscore_attrs_are_private = True
|
||||
|
||||
def __init__(self, **kwargs: Any) -> None:
|
||||
"""Initializes private fields."""
|
||||
try:
|
||||
from google.cloud.discoveryengine_v1beta import SearchServiceClient
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"google.cloud.discoveryengine is not installed."
|
||||
"Please install it with pip install google-cloud-discoveryengine"
|
||||
) from exc
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# For more information, refer to:
|
||||
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
|
||||
self._client = SearchServiceClient(
|
||||
credentials=self.credentials, client_options=self.client_options
|
||||
)
|
||||
|
||||
self._serving_config = self._client.serving_config_path(
|
||||
project=self.project_id,
|
||||
location=self.location_id,
|
||||
data_store=self.data_store_id,
|
||||
serving_config=self.serving_config_id,
|
||||
)
|
||||
|
||||
def _create_search_request(self, query: str) -> SearchRequest:
|
||||
"""Prepares a SearchRequest object."""
|
||||
from google.cloud.discoveryengine_v1beta import SearchRequest
|
||||
@ -300,7 +295,14 @@ class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
)
|
||||
|
||||
if self.engine_data_type == 0:
|
||||
documents = self._convert_unstructured_search_response(response.results)
|
||||
chunk_type = (
|
||||
"extractive_answers"
|
||||
if self.get_extractive_answers
|
||||
else "extractive_segments"
|
||||
)
|
||||
documents = self._convert_unstructured_search_response(
|
||||
response.results, chunk_type
|
||||
)
|
||||
elif self.engine_data_type == 1:
|
||||
documents = self._convert_structured_search_response(response.results)
|
||||
else:
|
||||
@ -312,3 +314,46 @@ class GoogleVertexAISearchRetriever(BaseRetriever):
|
||||
)
|
||||
|
||||
return documents
|
||||
|
||||
|
||||
class GoogleVertexAIMultiTurnSearchRetriever(
|
||||
BaseRetriever, _BaseGoogleVertexAISearchRetriever
|
||||
):
|
||||
_client: ConversationalSearchServiceClient
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.ignore
|
||||
arbitrary_types_allowed = True
|
||||
underscore_attrs_are_private = True
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
super().__init__(**kwargs)
|
||||
from google.cloud.discoveryengine_v1beta import (
|
||||
ConversationalSearchServiceClient,
|
||||
)
|
||||
|
||||
self._client = ConversationalSearchServiceClient(
|
||||
credentials=self.credentials, client_options=self.client_options
|
||||
)
|
||||
|
||||
def _get_relevant_documents(
|
||||
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||||
) -> List[Document]:
|
||||
"""Get documents relevant for a query."""
|
||||
from google.cloud.discoveryengine_v1beta import (
|
||||
ConverseConversationRequest,
|
||||
TextInput,
|
||||
)
|
||||
|
||||
request = ConverseConversationRequest(
|
||||
name=self._client.conversation_path(
|
||||
self.project_id, self.location_id, self.data_store_id, "-"
|
||||
),
|
||||
query=TextInput(input=query),
|
||||
)
|
||||
response = self._client.converse_conversation(request)
|
||||
return self._convert_unstructured_search_response(
|
||||
response.search_results, "extractive_answers"
|
||||
)
|
||||
|
@ -7,8 +7,8 @@ google_vertex_ai_search.ipynb
|
||||
to set up the app and configure authentication.
|
||||
|
||||
Set the following environment variables before the tests:
|
||||
PROJECT_ID - set to your Google Cloud project ID
|
||||
DATA_STORE_ID - the ID of the search engine to use for the test
|
||||
export PROJECT_ID=... - set to your Google Cloud project ID
|
||||
export DATA_STORE_ID=... - the ID of the search engine to use for the test
|
||||
"""
|
||||
|
||||
import os
|
||||
@ -18,7 +18,10 @@ import pytest
|
||||
from langchain.retrievers.google_cloud_enterprise_search import (
|
||||
GoogleCloudEnterpriseSearchRetriever,
|
||||
)
|
||||
from langchain.retrievers.google_vertex_ai_search import GoogleVertexAISearchRetriever
|
||||
from langchain.retrievers.google_vertex_ai_search import (
|
||||
GoogleVertexAIMultiTurnSearchRetriever,
|
||||
GoogleVertexAISearchRetriever,
|
||||
)
|
||||
from langchain.schema import Document
|
||||
|
||||
|
||||
@ -35,6 +38,19 @@ def test_google_vertex_ai_search_get_relevant_documents() -> None:
|
||||
assert doc.metadata["source"]
|
||||
|
||||
|
||||
@pytest.mark.requires("google_api_core")
|
||||
def test_google_vertex_ai_multiturnsearch_get_relevant_documents() -> None:
|
||||
"""Test the get_relevant_documents() method."""
|
||||
retriever = GoogleVertexAIMultiTurnSearchRetriever()
|
||||
documents = retriever.get_relevant_documents("What are Alphabet's Other Bets?")
|
||||
assert len(documents) > 0
|
||||
for doc in documents:
|
||||
assert isinstance(doc, Document)
|
||||
assert doc.page_content
|
||||
assert doc.metadata["id"]
|
||||
assert doc.metadata["source"]
|
||||
|
||||
|
||||
@pytest.mark.requires("google_api_core")
|
||||
def test_google_vertex_ai_search_enterprise_search_deprecation() -> None:
|
||||
"""Test the deprecation of GoogleCloudEnterpriseSearchRetriever."""
|
||||
|
Loading…
Reference in New Issue
Block a user