mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-11 07:50:47 +00:00
WIP: sql research assistant (#14240)
This commit is contained in:
@@ -0,0 +1,93 @@
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.chat_models import ChatOllama, ChatOpenAI
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough
|
||||
from langchain.utilities import SQLDatabase
|
||||
|
||||
# Add the LLM downloaded from Ollama
|
||||
ollama_llm = "llama2"
|
||||
llm = ChatOllama(model=ollama_llm)
|
||||
|
||||
|
||||
db_path = Path(__file__).parent / "nba_roster.db"
|
||||
rel = db_path.relative_to(Path.cwd())
|
||||
db_string = f"sqlite:///{rel}"
|
||||
db = SQLDatabase.from_uri(db_string, sample_rows_in_table_info=2)
|
||||
|
||||
|
||||
def get_schema(_):
|
||||
return db.get_table_info()
|
||||
|
||||
|
||||
def run_query(query):
|
||||
return db.run(query)
|
||||
|
||||
|
||||
# Prompt
|
||||
|
||||
template = """Based on the table schema below, write a SQL query that would answer the user's question:
|
||||
{schema}
|
||||
|
||||
Question: {question}
|
||||
SQL Query:""" # noqa: E501
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", "Given an input question, convert it to a SQL query. No pre-amble."),
|
||||
("human", template),
|
||||
]
|
||||
)
|
||||
|
||||
memory = ConversationBufferMemory(return_messages=True)
|
||||
|
||||
# Chain to query with memory
|
||||
|
||||
sql_chain = (
|
||||
RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
)
|
||||
| prompt
|
||||
| llm.bind(stop=["\nSQLResult:"])
|
||||
| StrOutputParser()
|
||||
| (lambda x: x.split("\n\n")[0])
|
||||
)
|
||||
|
||||
|
||||
# Chain to answer
|
||||
template = """Based on the table schema below, question, sql query, and sql response, write a natural language response:
|
||||
{schema}
|
||||
|
||||
Question: {question}
|
||||
SQL Query: {query}
|
||||
SQL Response: {response}""" # noqa: E501
|
||||
prompt_response = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"Given an input question and SQL response, convert it to a natural "
|
||||
"language answer. No pre-amble.",
|
||||
),
|
||||
("human", template),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# Supply the input types to the prompt
|
||||
class InputType(BaseModel):
|
||||
question: str
|
||||
|
||||
|
||||
sql_answer_chain = (
|
||||
RunnablePassthrough.assign(query=sql_chain).with_types(input_type=InputType)
|
||||
| RunnablePassthrough.assign(
|
||||
schema=get_schema,
|
||||
response=lambda x: db.run(x["query"]),
|
||||
)
|
||||
| RunnablePassthrough.assign(
|
||||
answer=prompt_response | ChatOpenAI() | StrOutputParser()
|
||||
)
|
||||
| (lambda x: f"Question: {x['question']}\n\nAnswer: {x['answer']}")
|
||||
)
|
Reference in New Issue
Block a user