mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-24 15:43:54 +00:00
template: Add Bedrock JCVD template (#14480)
This PR adds a simple LangChain template that uses [Anthropic's Claude on Amazon Bedrock ⛰️](https://aws.amazon.com/bedrock/claude/) to behave like JCVD. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
8b29b31554
commit
d306d89a9b
81
templates/bedrock-jcvd/README.md
Normal file
81
templates/bedrock-jcvd/README.md
Normal file
@ -0,0 +1,81 @@
|
||||
# Bedrock JCVD 🕺🥋
|
||||
|
||||
## Overview
|
||||
|
||||
LangChain template that uses [Anthropic's Claude on Amazon Bedrock](https://aws.amazon.com/bedrock/claude/) to behave like JCVD.
|
||||
|
||||
> I am the Fred Astaire of Chatbots! 🕺
|
||||
|
||||
'
|
||||
|
||||
## Environment Setup
|
||||
|
||||
### AWS Credentials
|
||||
|
||||
This template uses [Boto3](https://boto3.amazonaws.com/v1/documentation/api/latest/index.html), the AWS SDK for Python, to call [Amazon Bedrock](https://aws.amazon.com/bedrock/). You **must** configure both AWS credentials *and* an AWS Region in order to make requests.
|
||||
|
||||
> For information on how to do this, see [AWS Boto3 documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html) (Developer Guide > Credentials).
|
||||
|
||||
### Foundation Models
|
||||
|
||||
By default, this template uses [Anthropic's Claude v2](https://aws.amazon.com/about-aws/whats-new/2023/08/claude-2-foundation-model-anthropic-amazon-bedrock/) (`anthropic.claude-v2`).
|
||||
|
||||
> To request access to a specific model, check out the [Amazon Bedrock User Guide](https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html) (Model access)
|
||||
|
||||
To use a different model, set the environment variable `BEDROCK_JCVD_MODEL_ID`. A list of base models is available in the [Amazon Bedrock User Guide](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html) (Use the API > API operations > Run inference > Base Model IDs).
|
||||
|
||||
> The full list of available models (including base and [custom models](https://docs.aws.amazon.com/bedrock/latest/userguide/custom-models.html)) is available in the [Amazon Bedrock Console](https://docs.aws.amazon.com/bedrock/latest/userguide/using-console.html) under **Foundation Models** or by calling [`aws bedrock list-foundation-models`](https://docs.aws.amazon.com/cli/latest/reference/bedrock/list-foundation-models.html).
|
||||
|
||||
## Usage
|
||||
|
||||
To use this package, you should first have the LangChain CLI installed:
|
||||
|
||||
```shell
|
||||
pip install -U langchain-cli
|
||||
```
|
||||
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package bedrock-jcvd
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add bedrock-jcvd
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
```python
|
||||
from bedrock_jcvd import chain as bedrock_jcvd_chain
|
||||
|
||||
add_routes(app, bedrock_jcvd_chain, path="/bedrock-jcvd")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||
If you don't have access, you can skip this section
|
||||
|
||||
|
||||
```shell
|
||||
export LANGCHAIN_TRACING_V2=true
|
||||
export LANGCHAIN_API_KEY=<your-api-key>
|
||||
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||
```
|
||||
|
||||
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||
|
||||
```shell
|
||||
langchain serve
|
||||
```
|
||||
|
||||
This will start the FastAPI app with a server is running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs).
|
||||
|
||||
We can also access the playground at [http://127.0.0.1:8000/bedrock-jcvd/playground](http://127.0.0.1:8000/bedrock-jcvd/playground)
|
||||
|
||||

|
0
templates/bedrock-jcvd/bedrock_jcvd/__init__.py
Normal file
0
templates/bedrock-jcvd/bedrock_jcvd/__init__.py
Normal file
47
templates/bedrock-jcvd/bedrock_jcvd/chain.py
Normal file
47
templates/bedrock-jcvd/bedrock_jcvd/chain.py
Normal file
@ -0,0 +1,47 @@
|
||||
import os
|
||||
|
||||
from langchain.chat_models import BedrockChat
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.runnable import ConfigurableField
|
||||
|
||||
# For a description of each inference parameter, see
|
||||
# https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html
|
||||
_model_kwargs = {
|
||||
"temperature": float(os.getenv("BEDROCK_JCVD_TEMPERATURE", "0.1")),
|
||||
"top_p": float(os.getenv("BEDROCK_JCVD_TOP_P", "1")),
|
||||
"top_k": int(os.getenv("BEDROCK_JCVD_TOP_K", "250")),
|
||||
"max_tokens_to_sample": int(os.getenv("BEDROCK_JCVD_MAX_TOKENS_TO_SAMPLE", "300")),
|
||||
}
|
||||
|
||||
# Full list of base model IDs is available at
|
||||
# https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html
|
||||
_model_alts = {
|
||||
"claude_2_1": BedrockChat(
|
||||
model_id="anthropic.claude-v2:1", model_kwargs=_model_kwargs
|
||||
),
|
||||
"claude_1": BedrockChat(model_id="anthropic.claude-v1", model_kwargs=_model_kwargs),
|
||||
"claude_instant_1": BedrockChat(
|
||||
model_id="anthropic.claude-instant-v1", model_kwargs=_model_kwargs
|
||||
),
|
||||
}
|
||||
|
||||
# For some tips on how to construct effective prompts for Claude,
|
||||
# check out Anthropic's Claude Prompt Engineering deck (Bedrock edition)
|
||||
# https://docs.google.com/presentation/d/1tjvAebcEyR8la3EmVwvjC7PHR8gfSrcsGKfTPAaManw
|
||||
_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("human", "You are JCVD. {input}"),
|
||||
]
|
||||
)
|
||||
|
||||
_model = BedrockChat(
|
||||
model_id="anthropic.claude-v2", model_kwargs=_model_kwargs
|
||||
).configurable_alternatives(
|
||||
which=ConfigurableField(
|
||||
id="model", name="Model", description="The model that will be used"
|
||||
),
|
||||
default_key="claude_2",
|
||||
**_model_alts,
|
||||
)
|
||||
|
||||
chain = _prompt | _model
|
BIN
templates/bedrock-jcvd/jcvd_langserve.png
Normal file
BIN
templates/bedrock-jcvd/jcvd_langserve.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
1590
templates/bedrock-jcvd/poetry.lock
generated
Normal file
1590
templates/bedrock-jcvd/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
30
templates/bedrock-jcvd/pyproject.toml
Normal file
30
templates/bedrock-jcvd/pyproject.toml
Normal file
@ -0,0 +1,30 @@
|
||||
[tool.poetry]
|
||||
name = "bedrock-jcvd"
|
||||
version = "0.1.0"
|
||||
description = "LangChain template that behaves like JCVD using Anthropic's Claude on Amazon Bedrock"
|
||||
authors = ["JGalego <jgalego1990@gmail.com>"]
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.11"
|
||||
uvicorn = "^0.23.2"
|
||||
langserve = {extras = ["server"], version = ">=0.0.30"}
|
||||
pydantic = "<2"
|
||||
boto3 = "^1.33.10"
|
||||
|
||||
[tool.langserve]
|
||||
export_module = "bedrock_jcvd.chain"
|
||||
export_attr = "chain"
|
||||
|
||||
[tool.templates-hub]
|
||||
use-case = "chatbot"
|
||||
author = "LangChain"
|
||||
integrations = ["AWS"]
|
||||
tags = ["conversation"]
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
langchain-cli = ">=0.0.15"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
Loading…
Reference in New Issue
Block a user