mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 21:47:12 +00:00
Improvements to llm/deepinfra (#10846)
- replace `requests` package with `langchain.requests` - add `_acall` support - add `_stream` and `_astream` - freshen up the documentation a bit - update vendor doc
This commit is contained in:
committed by
GitHub
parent
f09f82541b
commit
d5d7ba582a
@@ -1,11 +1,15 @@
|
||||
from typing import Any, Dict, List, Mapping, Optional
|
||||
import json
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
|
||||
|
||||
import requests
|
||||
import aiohttp
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.llms.base import LLM, GenerationChunk
|
||||
from langchain.pydantic_v1 import Extra, root_validator
|
||||
from langchain.utilities.requests import Requests
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
DEFAULT_MODEL_ID = "google/flan-t5-xl"
|
||||
@@ -14,9 +18,9 @@ DEFAULT_MODEL_ID = "google/flan-t5-xl"
|
||||
class DeepInfra(LLM):
|
||||
"""DeepInfra models.
|
||||
|
||||
To use, you should have the ``requests`` python package installed, and the
|
||||
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
To use, you should have the environment variable ``DEEPINFRA_API_TOKEN``
|
||||
set with your API token, or pass it as a named parameter to the
|
||||
constructor.
|
||||
|
||||
Only supports `text-generation` and `text2text-generation` for now.
|
||||
|
||||
@@ -29,7 +33,7 @@ class DeepInfra(LLM):
|
||||
"""
|
||||
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
model_kwargs: Optional[dict] = None
|
||||
model_kwargs: Optional[Dict] = None
|
||||
|
||||
deepinfra_api_token: Optional[str] = None
|
||||
|
||||
@@ -60,6 +64,35 @@ class DeepInfra(LLM):
|
||||
"""Return type of llm."""
|
||||
return "deepinfra"
|
||||
|
||||
def _url(self) -> str:
|
||||
return f"https://api.deepinfra.com/v1/inference/{self.model_id}"
|
||||
|
||||
def _headers(self) -> Dict:
|
||||
return {
|
||||
"Authorization": f"bearer {self.deepinfra_api_token}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
def _body(self, prompt: str, kwargs: Any) -> Dict:
|
||||
model_kwargs = self.model_kwargs or {}
|
||||
model_kwargs = {**model_kwargs, **kwargs}
|
||||
|
||||
return {
|
||||
"input": prompt,
|
||||
**model_kwargs,
|
||||
}
|
||||
|
||||
def _handle_status(self, code: int, text: Any) -> None:
|
||||
if code >= 500:
|
||||
raise Exception(f"DeepInfra Server: Error {code}")
|
||||
elif code >= 400:
|
||||
raise ValueError(f"DeepInfra received an invalid payload: {text}")
|
||||
elif code != 200:
|
||||
raise Exception(
|
||||
f"DeepInfra returned an unexpected response with status "
|
||||
f"{code}: {text}"
|
||||
)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
@@ -81,38 +114,105 @@ class DeepInfra(LLM):
|
||||
|
||||
response = di("Tell me a joke.")
|
||||
"""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
_model_kwargs = {**_model_kwargs, **kwargs}
|
||||
# HTTP headers for authorization
|
||||
headers = {
|
||||
"Authorization": f"bearer {self.deepinfra_api_token}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
try:
|
||||
res = requests.post(
|
||||
f"https://api.deepinfra.com/v1/inference/{self.model_id}",
|
||||
headers=headers,
|
||||
json={"input": prompt, **_model_kwargs},
|
||||
)
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise ValueError(f"Error raised by inference endpoint: {e}")
|
||||
request = Requests(headers=self._headers())
|
||||
response = request.post(url=self._url(), data=self._body(prompt, kwargs))
|
||||
|
||||
if res.status_code != 200:
|
||||
raise ValueError(
|
||||
"Error raised by inference API HTTP code: %s, %s"
|
||||
% (res.status_code, res.text)
|
||||
)
|
||||
try:
|
||||
t = res.json()
|
||||
text = t["results"][0]["generated_text"]
|
||||
except requests.exceptions.JSONDecodeError as e:
|
||||
raise ValueError(
|
||||
f"Error raised by inference API: {e}.\nResponse: {res.text}"
|
||||
)
|
||||
self._handle_status(response.status_code, response.text)
|
||||
data = response.json()
|
||||
|
||||
if stop is not None:
|
||||
# I believe this is required since the stop tokens
|
||||
# are not enforced by the model parameters
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
||||
return data["results"][0]["generated_text"]
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
request = Requests(headers=self._headers())
|
||||
async with request.apost(
|
||||
url=self._url(), data=self._body(prompt, kwargs)
|
||||
) as response:
|
||||
self._handle_status(response.status, response.text)
|
||||
data = await response.json()
|
||||
return data["results"][0]["generated_text"]
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
request = Requests(headers=self._headers())
|
||||
response = request.post(
|
||||
url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
|
||||
)
|
||||
|
||||
self._handle_status(response.status_code, response.text)
|
||||
for line in _parse_stream(response.iter_lines()):
|
||||
chunk = _handle_sse_line(line)
|
||||
if chunk:
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
request = Requests(headers=self._headers())
|
||||
async with request.apost(
|
||||
url=self._url(), data=self._body(prompt, {**kwargs, "stream": True})
|
||||
) as response:
|
||||
self._handle_status(response.status, response.text)
|
||||
async for line in _parse_stream_async(response.content):
|
||||
chunk = _handle_sse_line(line)
|
||||
if chunk:
|
||||
yield chunk
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(chunk.text)
|
||||
|
||||
|
||||
def _parse_stream(rbody: Iterator[bytes]) -> Iterator[str]:
|
||||
for line in rbody:
|
||||
_line = _parse_stream_helper(line)
|
||||
if _line is not None:
|
||||
yield _line
|
||||
|
||||
|
||||
async def _parse_stream_async(rbody: aiohttp.StreamReader) -> AsyncIterator[str]:
|
||||
async for line in rbody:
|
||||
_line = _parse_stream_helper(line)
|
||||
if _line is not None:
|
||||
yield _line
|
||||
|
||||
|
||||
def _parse_stream_helper(line: bytes) -> Optional[str]:
|
||||
if line and line.startswith(b"data:"):
|
||||
if line.startswith(b"data: "):
|
||||
# SSE event may be valid when it contain whitespace
|
||||
line = line[len(b"data: ") :]
|
||||
else:
|
||||
line = line[len(b"data:") :]
|
||||
if line.strip() == b"[DONE]":
|
||||
# return here will cause GeneratorExit exception in urllib3
|
||||
# and it will close http connection with TCP Reset
|
||||
return None
|
||||
else:
|
||||
return line.decode("utf-8")
|
||||
return None
|
||||
|
||||
|
||||
def _handle_sse_line(line: str) -> Optional[GenerationChunk]:
|
||||
try:
|
||||
obj = json.loads(line)
|
||||
return GenerationChunk(
|
||||
text=obj.get("token", {}).get("text"),
|
||||
)
|
||||
except Exception:
|
||||
return None
|
||||
|
@@ -1,10 +1,36 @@
|
||||
"""Test DeepInfra API wrapper."""
|
||||
import pytest
|
||||
|
||||
from langchain.llms.deepinfra import DeepInfra
|
||||
|
||||
|
||||
def test_deepinfra_call() -> None:
|
||||
"""Test valid call to DeepInfra."""
|
||||
llm = DeepInfra(model_id="google/flan-t5-small")
|
||||
llm = DeepInfra(model_id="meta-llama/Llama-2-7b-chat-hf")
|
||||
output = llm("What is 2 + 2?")
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_deepinfra_acall() -> None:
|
||||
llm = DeepInfra(model_id="meta-llama/Llama-2-7b-chat-hf")
|
||||
output = await llm.apredict("What is 2 + 2?")
|
||||
assert llm._llm_type == "deepinfra"
|
||||
assert isinstance(output, str)
|
||||
|
||||
|
||||
def test_deepinfra_stream() -> None:
|
||||
llm = DeepInfra(model_id="meta-llama/Llama-2-7b-chat-hf")
|
||||
num_chunks = 0
|
||||
for chunk in llm.stream("[INST] Hello [/INST] "):
|
||||
num_chunks += 1
|
||||
assert num_chunks > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_deepinfra_astream() -> None:
|
||||
llm = DeepInfra(model_id="meta-llama/Llama-2-7b-chat-hf")
|
||||
num_chunks = 0
|
||||
async for chunk in llm.astream("[INST] Hello [/INST] "):
|
||||
num_chunks += 1
|
||||
assert num_chunks > 0
|
||||
|
Reference in New Issue
Block a user