mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-03 19:57:51 +00:00
Sentence Transformers Aliasing (#3541)
The sentence transformers was a dup of the HF one. This is a breaking change (model_name vs. model) for anyone using `SentenceTransformerEmbeddings(model="some/nondefault/model")`, but since it was landed only this week it seems better to do this now rather than doing a wrapper.
This commit is contained in:
parent
603ea75bcd
commit
d6d697a41b
@ -8,12 +8,14 @@
|
||||
"source": [
|
||||
"# Sentence Transformers Embeddings\n",
|
||||
"\n",
|
||||
"Let's generate embeddings using the [SentenceTransformers](https://www.sbert.net/) integration. SentenceTransformers is a python package that can generate text and image embeddings, originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)"
|
||||
"[SentenceTransformers](https://www.sbert.net/) embeddings are called using the `HuggingFaceEmbeddings` integration. We have also added an alias for `SentenceTransformerEmbeddings` for users who are more familiar with directly using that package.\n",
|
||||
"\n",
|
||||
"SentenceTransformers is a python package that can generate text and image embeddings, originating from [Sentence-BERT](https://arxiv.org/abs/1908.10084)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 1,
|
||||
"id": "06c9f47d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@ -21,10 +23,9 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
||||
"To disable this warning, you can either:\n",
|
||||
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
||||
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -34,27 +35,28 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 2,
|
||||
"id": "861521a9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import SentenceTransformerEmbeddings "
|
||||
"from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"id": "ff9be586",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = SentenceTransformerEmbeddings(model=\"all-MiniLM-L6-v2\")"
|
||||
"embeddings = HuggingFaceEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
|
||||
"# Equivalent to SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 4,
|
||||
"id": "d0a98ae9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -64,7 +66,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 5,
|
||||
"id": "5d6c682b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -74,7 +76,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 6,
|
||||
"id": "bb5e74c0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -107,7 +109,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
"version": "3.8.16"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
|
@ -1,63 +1,4 @@
|
||||
"""Wrapper around sentence transformer embedding models."""
|
||||
from typing import Any, Dict, List, Optional
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
|
||||
|
||||
class SentenceTransformerEmbeddings(BaseModel, Embeddings):
|
||||
embedding_function: Any #: :meta private:
|
||||
|
||||
model: Optional[str] = Field("all-MiniLM-L6-v2", alias="model")
|
||||
"""Transformer model to use."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that sentence_transformers library is installed."""
|
||||
model = values["model"]
|
||||
|
||||
try:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
values["embedding_function"] = SentenceTransformer(model)
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError(
|
||||
"Could not import sentence_transformers library. "
|
||||
"Please install the sentence_transformers library to "
|
||||
"use this embedding model: pip install sentence_transformers"
|
||||
)
|
||||
except Exception:
|
||||
raise NameError(f"Could not load SentenceTransformer model {model}.")
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed a list of documents using the SentenceTransformer model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = self.embedding_function.encode(
|
||||
texts, convert_to_numpy=True
|
||||
).tolist()
|
||||
return [list(map(float, e)) for e in embeddings]
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using the SentenceTransformer model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
||||
SentenceTransformerEmbeddings = HuggingFaceEmbeddings
|
||||
|
Loading…
Reference in New Issue
Block a user