mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-22 23:00:00 +00:00
community[minor]: Add embeddings integration for text2vec (#19267)
Create a Class which allows to use the "text2vec" open source embedding model. It should install the model by running 'pip install -U text2vec'. Example to call the model through LangChain: from langchain_community.embeddings.text2vec import Text2vecEmbeddings embedding = Text2vecEmbeddings() bookend.embed_documents([ "This is a CoSENT(Cosine Sentence) model.", "It maps sentences to a 768 dimensional dense vector space.", ]) bookend.embed_query( "It can be used for text matching or semantic search." ) --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: Eugene Yurtsev <eugene@langchain.dev> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
parent
55c624a694
commit
d7c14cb6f9
78
libs/community/langchain_community/embeddings/text2vec.py
Normal file
78
libs/community/langchain_community/embeddings/text2vec.py
Normal file
@ -0,0 +1,78 @@
|
||||
"""Wrapper around text2vec embedding models."""
|
||||
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
|
||||
class Text2vecEmbeddings(Embeddings, BaseModel):
|
||||
"""text2vec embedding models.
|
||||
|
||||
Install text2vec first, run 'pip install -U text2vec'.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
|
||||
|
||||
embedding = Text2vecEmbeddings()
|
||||
bookend.embed_documents([
|
||||
"This is a CoSENT(Cosine Sentence) model.",
|
||||
"It maps sentences to a 768 dimensional dense vector space.",
|
||||
])
|
||||
bookend.embed_query(
|
||||
"It can be used for text matching or semantic search."
|
||||
)
|
||||
"""
|
||||
|
||||
model_name_or_path: Optional[str] = None
|
||||
encoder_type: Any = "MEAN"
|
||||
max_seq_length: int = 256
|
||||
device: Optional[str] = None
|
||||
model: Any = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model: Any = None,
|
||||
model_name_or_path: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
try:
|
||||
from text2vec import SentenceModel
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Unable to import text2vec, please install with "
|
||||
"`pip install -U text2vec`."
|
||||
) from e
|
||||
|
||||
model_kwargs = {}
|
||||
if model_name_or_path is not None:
|
||||
model_kwargs["model_name_or_path"] = model_name_or_path
|
||||
model = model or SentenceModel(**model_kwargs, **kwargs)
|
||||
super().__init__(model=model, model_name_or_path=model_name_or_path, **kwargs)
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed documents using the text2vec embeddings model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
|
||||
return self.model.encode(texts)
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed a query using the text2vec embeddings model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
|
||||
return self.model.encode(text)
|
Loading…
Reference in New Issue
Block a user