feat: Added filtering option to FAISS vectorstore (#5966)

Inspired by the filtering capability available in ChromaDB, added the
same functionality to the FAISS vectorestore as well. Since FAISS does
not have an inbuilt method of filtering used the approach suggested in
this [thread](https://github.com/facebookresearch/faiss/issues/1079)
Langchain Issue inspiration:
https://github.com/hwchase17/langchain/issues/4572

- [x] Added filtering capability to semantic similarly and MMR
- [x] Added test cases for filtering in
`tests/integration_tests/vectorstores/test_faiss.py`

#### Who can review?

Tag maintainers/contributors who might be interested:

  VectorStores / Retrievers / Memory
  - @dev2049
  - @hwchase17
This commit is contained in:
Akhil Vempali
2023-06-12 01:50:03 +05:30
committed by GitHub
parent 6e90406e0f
commit d7d629911b
4 changed files with 282 additions and 59 deletions

View File

@@ -40,20 +40,12 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 2,
"id": "47f9b495-88f1-4286-8d5d-1416103931a7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI API Key: ········\n"
]
}
],
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
@@ -66,7 +58,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "aac9563e",
"metadata": {
"tags": []
@@ -81,7 +73,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"id": "a3c3999a",
"metadata": {
"tags": []
@@ -99,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 11,
"id": "5eabdb75",
"metadata": {
"tags": []
@@ -114,7 +106,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 12,
"id": "4b172de8",
"metadata": {
"tags": []
@@ -150,7 +142,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 13,
"id": "186ee1d8",
"metadata": {},
"outputs": [],
@@ -160,18 +152,18 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 14,
"id": "284e04b5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(Document(page_content='In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \\n\\nWe cannot let this happen. \\n\\nTonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),\n",
" 0.3914415)"
"(Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}),\n",
" 0.36913747)"
]
},
"execution_count": 7,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -191,7 +183,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 15,
"id": "b558ebb7",
"metadata": {},
"outputs": [],
@@ -212,7 +204,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 16,
"id": "428a6816",
"metadata": {},
"outputs": [],
@@ -222,7 +214,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 17,
"id": "56d1841c",
"metadata": {},
"outputs": [],
@@ -232,7 +224,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 18,
"id": "39055525",
"metadata": {},
"outputs": [],
@@ -242,17 +234,17 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 19,
"id": "98378c4e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \\n\\nWe cannot let this happen. \\n\\nTonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0)"
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
]
},
"execution_count": 13,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -273,7 +265,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 20,
"id": "6dfd2b78",
"metadata": {},
"outputs": [],
@@ -284,17 +276,17 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 21,
"id": "29960da7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'e0b74348-6c93-4893-8764-943139ec1d17': Document(page_content='foo', lookup_str='', metadata={}, lookup_index=0)}"
"{'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={})}"
]
},
"execution_count": 8,
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -305,17 +297,17 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 22,
"id": "83392605",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'bdc50ae3-a1bb-4678-9260-1b0979578f40': Document(page_content='bar', lookup_str='', metadata={}, lookup_index=0)}"
"{'807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}"
]
},
"execution_count": 9,
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
@@ -326,7 +318,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 23,
"id": "a3fcc1c7",
"metadata": {},
"outputs": [],
@@ -336,18 +328,18 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 24,
"id": "41c51f89",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'e0b74348-6c93-4893-8764-943139ec1d17': Document(page_content='foo', lookup_str='', metadata={}, lookup_index=0),\n",
" 'd5211050-c777-493d-8825-4800e74cfdb6': Document(page_content='bar', lookup_str='', metadata={}, lookup_index=0)}"
"{'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={}),\n",
" '807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}"
]
},
"execution_count": 11,
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
@@ -357,12 +349,139 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f80b60de",
"attachments": {},
"cell_type": "markdown",
"id": "f4294b96",
"metadata": {},
"outputs": [],
"source": []
"source": [
"## Similarity Search with filtering\n",
"FAISS vectorstore can also support filtering, since the FAISS does not natively support filtering we have to do it manually. This is done by first fetching more results than `k` and then filtering them. You can filter the documents based on metadata. You can also set the `fetch_k` parameter when calling any search method to set how many documents you want to fetch before filtering. Here is a small example:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d5bf812c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15\n",
"Content: foo, Metadata: {'page': 2}, Score: 5.159960813797904e-15\n",
"Content: foo, Metadata: {'page': 3}, Score: 5.159960813797904e-15\n",
"Content: foo, Metadata: {'page': 4}, Score: 5.159960813797904e-15\n"
]
}
],
"source": [
"from langchain.schema import Document\n",
"list_of_documents = [\n",
" Document(page_content=\"foo\", metadata=dict(page=1)),\n",
" Document(page_content=\"bar\", metadata=dict(page=1)),\n",
" Document(page_content=\"foo\", metadata=dict(page=2)),\n",
" Document(page_content=\"barbar\", metadata=dict(page=2)),\n",
" Document(page_content=\"foo\", metadata=dict(page=3)),\n",
" Document(page_content=\"bar burr\", metadata=dict(page=3)),\n",
" Document(page_content=\"foo\", metadata=dict(page=4)),\n",
" Document(page_content=\"bar bruh\", metadata=dict(page=4))\n",
"]\n",
"db = FAISS.from_documents(list_of_documents, embeddings)\n",
"results_with_scores = db.similarity_search_with_score(\"foo\")\n",
"for doc, score in results_with_scores:\n",
" print(f\"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3d33c126",
"metadata": {},
"source": [
"Now we make the same query call but we filter for only `page = 1` "
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "83159330",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15\n",
"Content: bar, Metadata: {'page': 1}, Score: 0.3131446838378906\n"
]
}
],
"source": [
"results_with_scores = db.similarity_search_with_score(\"foo\", filter=dict(page=1))\n",
"for doc, score in results_with_scores:\n",
" print(f\"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0be136e0",
"metadata": {},
"source": [
"Same thing can be done with the `max_marginal_relevance_search` as well."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "432c6980",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Content: foo, Metadata: {'page': 1}\n",
"Content: bar, Metadata: {'page': 1}\n"
]
}
],
"source": [
"results = db.max_marginal_relevance_search(\"foo\", filter=dict(page=1))\n",
"for doc in results:\n",
" print(f\"Content: {doc.page_content}, Metadata: {doc.metadata}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1b4ecd86",
"metadata": {},
"source": [
"Here is an example of how to set `fetch_k` parameter when calling `similarity_search`. Usually you would want the `fetch_k` parameter >> `k` parameter. This is because the `fetch_k` parameter is the number of documents that will be fetched before filtering. If you set `fetch_k` to a low number, you might not get enough documents to filter from."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "1fd60fd1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15\n",
"Content: bar, Metadata: {'page': 1}, Score: 0.3131446838378906\n"
]
}
],
"source": [
"results = db.similarity_search(\"foo\", filter=dict(page=1), k=1, fetch_k=4)\n",
"for doc, score in results_with_scores:\n",
" print(f\"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}\")"
]
}
],
"metadata": {
@@ -381,7 +500,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.9.16"
}
},
"nbformat": 4,