mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 11:39:18 +00:00
partners: add langchain-vdms (#29857)
**Description:** Deprecate vdms in community, add integration langchain-vdms, and update any related files **Issue:** n/a **Dependencies:** langchain-vdms **Twitter handle:** n/a --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
committed by
GitHub
parent
8293142fa0
commit
d972c6d6ea
@@ -9,53 +9,35 @@
|
||||
### Install Client
|
||||
|
||||
```bash
|
||||
pip install vdms
|
||||
pip install langchain-vdms
|
||||
```
|
||||
|
||||
### Install Database
|
||||
|
||||
There are two ways to get started with VDMS:
|
||||
|
||||
#### Install VDMS on your local machine via docker
|
||||
```bash
|
||||
docker run -d -p 55555:55555 intellabs/vdms:latest
|
||||
```
|
||||
|
||||
#### Install VDMS directly on your local machine
|
||||
Please see [installation instructions](https://github.com/IntelLabs/vdms/blob/master/INSTALL.md).
|
||||
|
||||
1. Install VDMS on your local machine via docker
|
||||
```bash
|
||||
docker run -d -p 55555:55555 intellabs/vdms:latest
|
||||
```
|
||||
|
||||
2. Install VDMS directly on your local machine. Please see
|
||||
[installation instructions](https://github.com/IntelLabs/vdms/blob/master/INSTALL.md).
|
||||
|
||||
## VectorStore
|
||||
|
||||
The vector store is a simple wrapper around VDMS. It provides a simple interface to store and retrieve data.
|
||||
To import this vectorstore:
|
||||
|
||||
```python
|
||||
from langchain_community.document_loaders import TextLoader
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
|
||||
loader = TextLoader("./state_of_the_union.txt")
|
||||
documents = loader.load()
|
||||
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
docs = text_splitter.split_documents(documents)
|
||||
|
||||
from langchain_community.vectorstores import VDMS
|
||||
from langchain_community.vectorstores.vdms import VDMS_Client
|
||||
from langchain_huggingface import HuggingFaceEmbeddings
|
||||
|
||||
client = VDMS_Client("localhost", 55555)
|
||||
model_name = "sentence-transformers/all-mpnet-base-v2"
|
||||
vectorstore = VDMS.from_documents(
|
||||
docs,
|
||||
client=client,
|
||||
collection_name="langchain-demo",
|
||||
embedding_function=HuggingFaceEmbeddings(model_name=model_name),
|
||||
engine="FaissFlat"
|
||||
distance_strategy="L2",
|
||||
)
|
||||
|
||||
query = "What did the president say about Ketanji Brown Jackson"
|
||||
results = vectorstore.similarity_search(query)
|
||||
from langchain_vdms import VDMS
|
||||
from langchain_vdms.vectorstores import VDMS
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the VDMS wrapper, see [this notebook](/docs/integrations/vectorstores/vdms)
|
||||
To import the VDMS Client connector:
|
||||
|
||||
```python
|
||||
from langchain_vdms.vectorstores import VDMS_Client
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the VDMS wrapper, see [this guide](/docs/integrations/vectorstores/vdms).
|
||||
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user