partners: add langchain-vdms (#29857)

**Description:** Deprecate vdms in community, add integration
langchain-vdms, and update any related files
**Issue:** n/a
**Dependencies:** langchain-vdms
**Twitter handle:** n/a

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
This commit is contained in:
Chaunte W. Lacewell
2025-02-20 16:48:46 -08:00
committed by GitHub
parent 8293142fa0
commit d972c6d6ea
6 changed files with 969 additions and 1124 deletions

View File

@@ -9,53 +9,35 @@
### Install Client
```bash
pip install vdms
pip install langchain-vdms
```
### Install Database
There are two ways to get started with VDMS:
#### Install VDMS on your local machine via docker
```bash
docker run -d -p 55555:55555 intellabs/vdms:latest
```
#### Install VDMS directly on your local machine
Please see [installation instructions](https://github.com/IntelLabs/vdms/blob/master/INSTALL.md).
1. Install VDMS on your local machine via docker
```bash
docker run -d -p 55555:55555 intellabs/vdms:latest
```
2. Install VDMS directly on your local machine. Please see
[installation instructions](https://github.com/IntelLabs/vdms/blob/master/INSTALL.md).
## VectorStore
The vector store is a simple wrapper around VDMS. It provides a simple interface to store and retrieve data.
To import this vectorstore:
```python
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
loader = TextLoader("./state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
from langchain_community.vectorstores import VDMS
from langchain_community.vectorstores.vdms import VDMS_Client
from langchain_huggingface import HuggingFaceEmbeddings
client = VDMS_Client("localhost", 55555)
model_name = "sentence-transformers/all-mpnet-base-v2"
vectorstore = VDMS.from_documents(
docs,
client=client,
collection_name="langchain-demo",
embedding_function=HuggingFaceEmbeddings(model_name=model_name),
engine="FaissFlat"
distance_strategy="L2",
)
query = "What did the president say about Ketanji Brown Jackson"
results = vectorstore.similarity_search(query)
from langchain_vdms import VDMS
from langchain_vdms.vectorstores import VDMS
```
For a more detailed walkthrough of the VDMS wrapper, see [this notebook](/docs/integrations/vectorstores/vdms)
To import the VDMS Client connector:
```python
from langchain_vdms.vectorstores import VDMS_Client
```
For a more detailed walkthrough of the VDMS wrapper, see [this guide](/docs/integrations/vectorstores/vdms).

File diff suppressed because it is too large Load Diff