mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 13:54:48 +00:00
community[minor]: Added GigaChat Embeddings support + updated previous GigaChat integration (#19516)
- **Description:** Added integration with [GigaChat](https://developers.sber.ru/portal/products/gigachat) embeddings. Also added support for extra fields in GigaChat LLM and fixed docs.
This commit is contained in:
parent
e5bdb26f76
commit
dac2e0165a
@ -13,9 +13,12 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true
|
"collapsed": true,
|
||||||
|
"pycharm": {
|
||||||
|
"is_executing": true
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -28,13 +31,14 @@
|
|||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/api/integration)\n",
|
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
|
||||||
|
"\n",
|
||||||
"## Example"
|
"## Example"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -48,7 +52,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -56,12 +60,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_community.chat_models import GigaChat\n",
|
"from langchain_community.chat_models import GigaChat\n",
|
||||||
"\n",
|
"\n",
|
||||||
"chat = GigaChat(verify_ssl_certs=False)"
|
"chat = GigaChat(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 31,
|
"execution_count": 8,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -70,7 +74,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"What do you get when you cross a goat and a skunk? A smelly goat!\n"
|
"The capital of Russia is Moscow.\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -81,10 +85,10 @@
|
|||||||
" SystemMessage(\n",
|
" SystemMessage(\n",
|
||||||
" content=\"You are a helpful AI that shares everything you know. Talk in English.\"\n",
|
" content=\"You are a helpful AI that shares everything you know. Talk in English.\"\n",
|
||||||
" ),\n",
|
" ),\n",
|
||||||
" HumanMessage(content=\"Tell me a joke\"),\n",
|
" HumanMessage(content=\"What is capital of Russia?\"),\n",
|
||||||
"]\n",
|
"]\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(chat(messages).content)"
|
"print(chat.invoke(messages).content)"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -15,7 +15,10 @@
|
|||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": true
|
"collapsed": true,
|
||||||
|
"pycharm": {
|
||||||
|
"is_executing": true
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -28,13 +31,14 @@
|
|||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/api/integration)\n",
|
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
|
||||||
|
"\n",
|
||||||
"## Example"
|
"## Example"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -48,7 +52,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -56,12 +60,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"from langchain_community.llms import GigaChat\n",
|
"from langchain_community.llms import GigaChat\n",
|
||||||
"\n",
|
"\n",
|
||||||
"llm = GigaChat(verify_ssl_certs=False)"
|
"llm = GigaChat(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 9,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false
|
"collapsed": false
|
||||||
},
|
},
|
||||||
@ -84,8 +88,8 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"generated = llm_chain.run(country=\"Russia\")\n",
|
"generated = llm_chain.invoke(input={\"country\": \"Russia\"})\n",
|
||||||
"print(generated)"
|
"print(generated[\"text\"])"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
@ -26,4 +26,12 @@ See a [usage example](/docs/integrations/chat/gigachat).
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.chat_models import GigaChat
|
from langchain_community.chat_models import GigaChat
|
||||||
|
```
|
||||||
|
|
||||||
|
## Embeddings
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/text_embedding/gigachat).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain_community.embeddings import GigaChatEmbeddings
|
||||||
```
|
```
|
116
docs/docs/integrations/text_embedding/gigachat.ipynb
Normal file
116
docs/docs/integrations/text_embedding/gigachat.ipynb
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"# GigaChat\n",
|
||||||
|
"This notebook shows how to use LangChain with [GigaChat embeddings](https://developers.sber.ru/portal/products/gigachat).\n",
|
||||||
|
"To use you need to install ```gigachat``` python package."
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%pip install --upgrade --quiet gigachat"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"source": [
|
||||||
|
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
|
||||||
|
"\n",
|
||||||
|
"## Example"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import os\n",
|
||||||
|
"from getpass import getpass\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain_community.embeddings import GigaChatEmbeddings\n",
|
||||||
|
"\n",
|
||||||
|
"embeddings = GigaChatEmbeddings(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(\"The quick brown fox jumps over the lazy dog\")"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": "[0.8398333191871643,\n -0.14180311560630798,\n -0.6161925792694092,\n -0.17103666067123413,\n 1.2884578704833984]"
|
||||||
|
},
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"query_result[:5]"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
@ -1,5 +1,17 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
from typing import Any, AsyncIterator, Iterator, List, Optional
|
from typing import (
|
||||||
|
TYPE_CHECKING,
|
||||||
|
Any,
|
||||||
|
AsyncIterator,
|
||||||
|
Dict,
|
||||||
|
Iterator,
|
||||||
|
List,
|
||||||
|
Mapping,
|
||||||
|
Optional,
|
||||||
|
Type,
|
||||||
|
)
|
||||||
|
|
||||||
from langchain_core.callbacks import (
|
from langchain_core.callbacks import (
|
||||||
AsyncCallbackManagerForLLMRun,
|
AsyncCallbackManagerForLLMRun,
|
||||||
@ -14,31 +26,47 @@ from langchain_core.messages import (
|
|||||||
AIMessage,
|
AIMessage,
|
||||||
AIMessageChunk,
|
AIMessageChunk,
|
||||||
BaseMessage,
|
BaseMessage,
|
||||||
|
BaseMessageChunk,
|
||||||
ChatMessage,
|
ChatMessage,
|
||||||
|
ChatMessageChunk,
|
||||||
|
FunctionMessage,
|
||||||
|
FunctionMessageChunk,
|
||||||
HumanMessage,
|
HumanMessage,
|
||||||
|
HumanMessageChunk,
|
||||||
SystemMessage,
|
SystemMessage,
|
||||||
|
SystemMessageChunk,
|
||||||
)
|
)
|
||||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||||
|
|
||||||
from langchain_community.llms.gigachat import _BaseGigaChat
|
from langchain_community.llms.gigachat import _BaseGigaChat
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
import gigachat.models as gm
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def _convert_dict_to_message(message: Any) -> BaseMessage:
|
def _convert_dict_to_message(message: gm.Messages) -> BaseMessage:
|
||||||
from gigachat.models import MessagesRole
|
from gigachat.models import FunctionCall, MessagesRole
|
||||||
|
|
||||||
|
additional_kwargs: Dict = {}
|
||||||
|
if function_call := message.function_call:
|
||||||
|
if isinstance(function_call, FunctionCall):
|
||||||
|
additional_kwargs["function_call"] = dict(function_call)
|
||||||
|
elif isinstance(function_call, dict):
|
||||||
|
additional_kwargs["function_call"] = function_call
|
||||||
|
|
||||||
if message.role == MessagesRole.SYSTEM:
|
if message.role == MessagesRole.SYSTEM:
|
||||||
return SystemMessage(content=message.content)
|
return SystemMessage(content=message.content)
|
||||||
elif message.role == MessagesRole.USER:
|
elif message.role == MessagesRole.USER:
|
||||||
return HumanMessage(content=message.content)
|
return HumanMessage(content=message.content)
|
||||||
elif message.role == MessagesRole.ASSISTANT:
|
elif message.role == MessagesRole.ASSISTANT:
|
||||||
return AIMessage(content=message.content)
|
return AIMessage(content=message.content, additional_kwargs=additional_kwargs)
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"Got unknown role {message.role} {message}")
|
raise TypeError(f"Got unknown role {message.role} {message}")
|
||||||
|
|
||||||
|
|
||||||
def _convert_message_to_dict(message: BaseMessage) -> Any:
|
def _convert_message_to_dict(message: gm.BaseMessage) -> gm.Messages:
|
||||||
from gigachat.models import Messages, MessagesRole
|
from gigachat.models import Messages, MessagesRole
|
||||||
|
|
||||||
if isinstance(message, SystemMessage):
|
if isinstance(message, SystemMessage):
|
||||||
@ -46,13 +74,45 @@ def _convert_message_to_dict(message: BaseMessage) -> Any:
|
|||||||
elif isinstance(message, HumanMessage):
|
elif isinstance(message, HumanMessage):
|
||||||
return Messages(role=MessagesRole.USER, content=message.content)
|
return Messages(role=MessagesRole.USER, content=message.content)
|
||||||
elif isinstance(message, AIMessage):
|
elif isinstance(message, AIMessage):
|
||||||
return Messages(role=MessagesRole.ASSISTANT, content=message.content)
|
return Messages(
|
||||||
|
role=MessagesRole.ASSISTANT,
|
||||||
|
content=message.content,
|
||||||
|
function_call=message.additional_kwargs.get("function_call", None),
|
||||||
|
)
|
||||||
elif isinstance(message, ChatMessage):
|
elif isinstance(message, ChatMessage):
|
||||||
return Messages(role=MessagesRole(message.role), content=message.content)
|
return Messages(role=MessagesRole(message.role), content=message.content)
|
||||||
|
elif isinstance(message, FunctionMessage):
|
||||||
|
return Messages(role=MessagesRole.FUNCTION, content=message.content)
|
||||||
else:
|
else:
|
||||||
raise TypeError(f"Got unknown type {message}")
|
raise TypeError(f"Got unknown type {message}")
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_delta_to_message_chunk(
|
||||||
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||||
|
) -> BaseMessageChunk:
|
||||||
|
role = _dict.get("role")
|
||||||
|
content = _dict.get("content") or ""
|
||||||
|
additional_kwargs: Dict = {}
|
||||||
|
if _dict.get("function_call"):
|
||||||
|
function_call = dict(_dict["function_call"])
|
||||||
|
if "name" in function_call and function_call["name"] is None:
|
||||||
|
function_call["name"] = ""
|
||||||
|
additional_kwargs["function_call"] = function_call
|
||||||
|
|
||||||
|
if role == "user" or default_class == HumanMessageChunk:
|
||||||
|
return HumanMessageChunk(content=content)
|
||||||
|
elif role == "assistant" or default_class == AIMessageChunk:
|
||||||
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
||||||
|
elif role == "system" or default_class == SystemMessageChunk:
|
||||||
|
return SystemMessageChunk(content=content)
|
||||||
|
elif role == "function" or default_class == FunctionMessageChunk:
|
||||||
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
||||||
|
elif role or default_class == ChatMessageChunk:
|
||||||
|
return ChatMessageChunk(content=content, role=role)
|
||||||
|
else:
|
||||||
|
return default_class(content=content)
|
||||||
|
|
||||||
|
|
||||||
class GigaChat(_BaseGigaChat, BaseChatModel):
|
class GigaChat(_BaseGigaChat, BaseChatModel):
|
||||||
"""`GigaChat` large language models API.
|
"""`GigaChat` large language models API.
|
||||||
|
|
||||||
@ -62,23 +122,33 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_community.chat_models import GigaChat
|
from langchain_community.chat_models import GigaChat
|
||||||
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def _build_payload(self, messages: List[BaseMessage]) -> Any:
|
def _build_payload(self, messages: List[BaseMessage], **kwargs: Any) -> gm.Chat:
|
||||||
from gigachat.models import Chat
|
from gigachat.models import Chat
|
||||||
|
|
||||||
payload = Chat(
|
payload = Chat(
|
||||||
messages=[_convert_message_to_dict(m) for m in messages],
|
messages=[_convert_message_to_dict(m) for m in messages],
|
||||||
profanity_check=self.profanity,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
payload.functions = kwargs.get("functions", None)
|
||||||
|
|
||||||
|
if self.profanity_check is not None:
|
||||||
|
payload.profanity_check = self.profanity_check
|
||||||
if self.temperature is not None:
|
if self.temperature is not None:
|
||||||
payload.temperature = self.temperature
|
payload.temperature = self.temperature
|
||||||
|
if self.top_p is not None:
|
||||||
|
payload.top_p = self.top_p
|
||||||
if self.max_tokens is not None:
|
if self.max_tokens is not None:
|
||||||
payload.max_tokens = self.max_tokens
|
payload.max_tokens = self.max_tokens
|
||||||
|
if self.repetition_penalty is not None:
|
||||||
|
payload.repetition_penalty = self.repetition_penalty
|
||||||
|
if self.update_interval is not None:
|
||||||
|
payload.update_interval = self.update_interval
|
||||||
|
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
logger.info("Giga request: %s", payload.dict())
|
logger.warning("Giga request: %s", payload.dict())
|
||||||
|
|
||||||
return payload
|
return payload
|
||||||
|
|
||||||
@ -98,7 +168,7 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
finish_reason,
|
finish_reason,
|
||||||
)
|
)
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
logger.info("Giga response: %s", message.content)
|
logger.warning("Giga response: %s", message.content)
|
||||||
llm_output = {"token_usage": response.usage, "model_name": response.model}
|
llm_output = {"token_usage": response.usage, "model_name": response.model}
|
||||||
return ChatResult(generations=generations, llm_output=llm_output)
|
return ChatResult(generations=generations, llm_output=llm_output)
|
||||||
|
|
||||||
@ -117,7 +187,7 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
)
|
)
|
||||||
return generate_from_stream(stream_iter)
|
return generate_from_stream(stream_iter)
|
||||||
|
|
||||||
payload = self._build_payload(messages)
|
payload = self._build_payload(messages, **kwargs)
|
||||||
response = self._client.chat(payload)
|
response = self._client.chat(payload)
|
||||||
|
|
||||||
return self._create_chat_result(response)
|
return self._create_chat_result(response)
|
||||||
@ -137,7 +207,7 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
)
|
)
|
||||||
return await agenerate_from_stream(stream_iter)
|
return await agenerate_from_stream(stream_iter)
|
||||||
|
|
||||||
payload = self._build_payload(messages)
|
payload = self._build_payload(messages, **kwargs)
|
||||||
response = await self._client.achat(payload)
|
response = await self._client.achat(payload)
|
||||||
|
|
||||||
return self._create_chat_result(response)
|
return self._create_chat_result(response)
|
||||||
@ -149,15 +219,28 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> Iterator[ChatGenerationChunk]:
|
) -> Iterator[ChatGenerationChunk]:
|
||||||
payload = self._build_payload(messages)
|
payload = self._build_payload(messages, **kwargs)
|
||||||
|
|
||||||
for chunk in self._client.stream(payload):
|
for chunk in self._client.stream(payload):
|
||||||
if chunk.choices:
|
if not isinstance(chunk, dict):
|
||||||
content = chunk.choices[0].delta.content
|
chunk = chunk.dict()
|
||||||
cg_chunk = ChatGenerationChunk(message=AIMessageChunk(content=content))
|
if len(chunk["choices"]) == 0:
|
||||||
if run_manager:
|
continue
|
||||||
run_manager.on_llm_new_token(content, chunk=cg_chunk)
|
|
||||||
yield cg_chunk
|
choice = chunk["choices"][0]
|
||||||
|
content = choice.get("delta", {}).get("content", {})
|
||||||
|
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
|
||||||
|
|
||||||
|
finish_reason = choice.get("finish_reason")
|
||||||
|
|
||||||
|
generation_info = (
|
||||||
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
||||||
|
)
|
||||||
|
|
||||||
|
if run_manager:
|
||||||
|
run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
|
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
||||||
|
|
||||||
async def _astream(
|
async def _astream(
|
||||||
self,
|
self,
|
||||||
@ -166,16 +249,24 @@ class GigaChat(_BaseGigaChat, BaseChatModel):
|
|||||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> AsyncIterator[ChatGenerationChunk]:
|
) -> AsyncIterator[ChatGenerationChunk]:
|
||||||
payload = self._build_payload(messages)
|
payload = self._build_payload(messages, **kwargs)
|
||||||
|
|
||||||
async for chunk in self._client.astream(payload):
|
async for chunk in self._client.astream(payload):
|
||||||
if chunk.choices:
|
if not isinstance(chunk, dict):
|
||||||
content = chunk.choices[0].delta.content
|
chunk = chunk.dict()
|
||||||
cg_chunk = ChatGenerationChunk(message=AIMessageChunk(content=content))
|
if len(chunk["choices"]) == 0:
|
||||||
if run_manager:
|
continue
|
||||||
await run_manager.on_llm_new_token(content, chunk=cg_chunk)
|
|
||||||
yield cg_chunk
|
|
||||||
|
|
||||||
def get_num_tokens(self, text: str) -> int:
|
choice = chunk["choices"][0]
|
||||||
"""Count approximate number of tokens"""
|
content = choice.get("delta", {}).get("content", {})
|
||||||
return round(len(text) / 4.6)
|
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
|
||||||
|
|
||||||
|
finish_reason = choice.get("finish_reason")
|
||||||
|
|
||||||
|
generation_info = (
|
||||||
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
||||||
|
if run_manager:
|
||||||
|
await run_manager.on_llm_new_token(content)
|
||||||
|
@ -38,6 +38,7 @@ _module_lookup = {
|
|||||||
"GPT4AllEmbeddings": "langchain_community.embeddings.gpt4all",
|
"GPT4AllEmbeddings": "langchain_community.embeddings.gpt4all",
|
||||||
"GooglePalmEmbeddings": "langchain_community.embeddings.google_palm",
|
"GooglePalmEmbeddings": "langchain_community.embeddings.google_palm",
|
||||||
"GradientEmbeddings": "langchain_community.embeddings.gradient_ai",
|
"GradientEmbeddings": "langchain_community.embeddings.gradient_ai",
|
||||||
|
"GigaChatEmbeddings": "langchain_community.embeddings.gigachat",
|
||||||
"HuggingFaceBgeEmbeddings": "langchain_community.embeddings.huggingface",
|
"HuggingFaceBgeEmbeddings": "langchain_community.embeddings.huggingface",
|
||||||
"HuggingFaceEmbeddings": "langchain_community.embeddings.huggingface",
|
"HuggingFaceEmbeddings": "langchain_community.embeddings.huggingface",
|
||||||
"HuggingFaceHubEmbeddings": "langchain_community.embeddings.huggingface_hub",
|
"HuggingFaceHubEmbeddings": "langchain_community.embeddings.huggingface_hub",
|
||||||
|
187
libs/community/langchain_community/embeddings/gigachat.py
Normal file
187
libs/community/langchain_community/embeddings/gigachat.py
Normal file
@ -0,0 +1,187 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from functools import cached_property
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
|
from langchain_core.embeddings import Embeddings
|
||||||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
MAX_BATCH_SIZE_CHARS = 1000000
|
||||||
|
MAX_BATCH_SIZE_PARTS = 90
|
||||||
|
|
||||||
|
|
||||||
|
class GigaChatEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""GigaChat Embeddings models.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
from langchain_community.embeddings.gigachat import GigaChatEmbeddings
|
||||||
|
|
||||||
|
embeddings = GigaChatEmbeddings(
|
||||||
|
credentials=..., scope=..., verify_ssl_certs=False
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
|
||||||
|
base_url: Optional[str] = None
|
||||||
|
""" Base API URL """
|
||||||
|
auth_url: Optional[str] = None
|
||||||
|
""" Auth URL """
|
||||||
|
credentials: Optional[str] = None
|
||||||
|
""" Auth Token """
|
||||||
|
scope: Optional[str] = None
|
||||||
|
""" Permission scope for access token """
|
||||||
|
|
||||||
|
access_token: Optional[str] = None
|
||||||
|
""" Access token for GigaChat """
|
||||||
|
|
||||||
|
model: Optional[str] = None
|
||||||
|
"""Model name to use."""
|
||||||
|
user: Optional[str] = None
|
||||||
|
""" Username for authenticate """
|
||||||
|
password: Optional[str] = None
|
||||||
|
""" Password for authenticate """
|
||||||
|
|
||||||
|
timeout: Optional[float] = 600
|
||||||
|
""" Timeout for request. By default it works for long requests. """
|
||||||
|
verify_ssl_certs: Optional[bool] = None
|
||||||
|
""" Check certificates for all requests """
|
||||||
|
|
||||||
|
ca_bundle_file: Optional[str] = None
|
||||||
|
cert_file: Optional[str] = None
|
||||||
|
key_file: Optional[str] = None
|
||||||
|
key_file_password: Optional[str] = None
|
||||||
|
# Support for connection to GigaChat through SSL certificates
|
||||||
|
|
||||||
|
@cached_property
|
||||||
|
def _client(self) -> Any:
|
||||||
|
"""Returns GigaChat API client"""
|
||||||
|
import gigachat
|
||||||
|
|
||||||
|
return gigachat.GigaChat(
|
||||||
|
base_url=self.base_url,
|
||||||
|
auth_url=self.auth_url,
|
||||||
|
credentials=self.credentials,
|
||||||
|
scope=self.scope,
|
||||||
|
access_token=self.access_token,
|
||||||
|
model=self.model,
|
||||||
|
user=self.user,
|
||||||
|
password=self.password,
|
||||||
|
timeout=self.timeout,
|
||||||
|
verify_ssl_certs=self.verify_ssl_certs,
|
||||||
|
ca_bundle_file=self.ca_bundle_file,
|
||||||
|
cert_file=self.cert_file,
|
||||||
|
key_file=self.key_file,
|
||||||
|
key_file_password=self.key_file_password,
|
||||||
|
)
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate authenticate data in environment and python package is installed."""
|
||||||
|
try:
|
||||||
|
import gigachat # noqa: F401
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import gigachat python package. "
|
||||||
|
"Please install it with `pip install gigachat`."
|
||||||
|
)
|
||||||
|
fields = set(cls.__fields__.keys())
|
||||||
|
diff = set(values.keys()) - fields
|
||||||
|
if diff:
|
||||||
|
logger.warning(f"Extra fields {diff} in GigaChat class")
|
||||||
|
return values
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Embed documents using a GigaChat embeddings models.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
result: List[List[float]] = []
|
||||||
|
size = 0
|
||||||
|
local_texts = []
|
||||||
|
embed_kwargs = {}
|
||||||
|
if self.model is not None:
|
||||||
|
embed_kwargs["model"] = self.model
|
||||||
|
for text in texts:
|
||||||
|
local_texts.append(text)
|
||||||
|
size += len(text)
|
||||||
|
if size > MAX_BATCH_SIZE_CHARS or len(local_texts) > MAX_BATCH_SIZE_PARTS:
|
||||||
|
for embedding in self._client.embeddings(
|
||||||
|
texts=local_texts, **embed_kwargs
|
||||||
|
).data:
|
||||||
|
result.append(embedding.embedding)
|
||||||
|
size = 0
|
||||||
|
local_texts = []
|
||||||
|
# Call for last iteration
|
||||||
|
if local_texts:
|
||||||
|
for embedding in self._client.embeddings(
|
||||||
|
texts=local_texts, **embed_kwargs
|
||||||
|
).data:
|
||||||
|
result.append(embedding.embedding)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Embed documents using a GigaChat embeddings models.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
result: List[List[float]] = []
|
||||||
|
size = 0
|
||||||
|
local_texts = []
|
||||||
|
embed_kwargs = {}
|
||||||
|
if self.model is not None:
|
||||||
|
embed_kwargs["model"] = self.model
|
||||||
|
for text in texts:
|
||||||
|
local_texts.append(text)
|
||||||
|
size += len(text)
|
||||||
|
if size > MAX_BATCH_SIZE_CHARS or len(local_texts) > MAX_BATCH_SIZE_PARTS:
|
||||||
|
embeddings = await self._client.aembeddings(
|
||||||
|
texts=local_texts, **embed_kwargs
|
||||||
|
)
|
||||||
|
for embedding in embeddings.data:
|
||||||
|
result.append(embedding.embedding)
|
||||||
|
size = 0
|
||||||
|
local_texts = []
|
||||||
|
# Call for last iteration
|
||||||
|
if local_texts:
|
||||||
|
embeddings = await self._client.aembeddings(
|
||||||
|
texts=local_texts, **embed_kwargs
|
||||||
|
)
|
||||||
|
for embedding in embeddings.data:
|
||||||
|
result.append(embedding.embedding)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Embed a query using a GigaChat embeddings models.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
return self.embed_documents(texts=[text])[0]
|
||||||
|
|
||||||
|
async def aembed_query(self, text: str) -> List[float]:
|
||||||
|
"""Embed a query using a GigaChat embeddings models.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
docs = await self.aembed_documents(texts=[text])
|
||||||
|
return docs[0]
|
@ -2,7 +2,7 @@ from __future__ import annotations
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, Iterator, List, Optional
|
||||||
|
|
||||||
from langchain_core.callbacks import (
|
from langchain_core.callbacks import (
|
||||||
AsyncCallbackManagerForLLMRun,
|
AsyncCallbackManagerForLLMRun,
|
||||||
@ -13,6 +13,10 @@ from langchain_core.load.serializable import Serializable
|
|||||||
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||||||
from langchain_core.pydantic_v1 import root_validator
|
from langchain_core.pydantic_v1 import root_validator
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
import gigachat
|
||||||
|
import gigachat.models as gm
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
@ -48,13 +52,25 @@ class _BaseGigaChat(Serializable):
|
|||||||
# Support for connection to GigaChat through SSL certificates
|
# Support for connection to GigaChat through SSL certificates
|
||||||
|
|
||||||
profanity: bool = True
|
profanity: bool = True
|
||||||
|
""" DEPRECATED: Check for profanity """
|
||||||
|
profanity_check: Optional[bool] = None
|
||||||
""" Check for profanity """
|
""" Check for profanity """
|
||||||
streaming: bool = False
|
streaming: bool = False
|
||||||
""" Whether to stream the results or not. """
|
""" Whether to stream the results or not. """
|
||||||
temperature: Optional[float] = None
|
temperature: Optional[float] = None
|
||||||
"""What sampling temperature to use."""
|
""" What sampling temperature to use. """
|
||||||
max_tokens: Optional[int] = None
|
max_tokens: Optional[int] = None
|
||||||
""" Maximum number of tokens to generate """
|
""" Maximum number of tokens to generate """
|
||||||
|
use_api_for_tokens: bool = False
|
||||||
|
""" Use GigaChat API for tokens count """
|
||||||
|
verbose: bool = False
|
||||||
|
""" Verbose logging """
|
||||||
|
top_p: Optional[float] = None
|
||||||
|
""" top_p value to use for nucleus sampling. Must be between 0.0 and 1.0 """
|
||||||
|
repetition_penalty: Optional[float] = None
|
||||||
|
""" The penalty applied to repeated tokens """
|
||||||
|
update_interval: Optional[float] = None
|
||||||
|
""" Minimum interval in seconds that elapses between sending tokens """
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def _llm_type(self) -> str:
|
def _llm_type(self) -> str:
|
||||||
@ -74,7 +90,7 @@ class _BaseGigaChat(Serializable):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def _client(self) -> Any:
|
def _client(self) -> gigachat.GigaChat:
|
||||||
"""Returns GigaChat API client"""
|
"""Returns GigaChat API client"""
|
||||||
import gigachat
|
import gigachat
|
||||||
|
|
||||||
@ -85,6 +101,7 @@ class _BaseGigaChat(Serializable):
|
|||||||
scope=self.scope,
|
scope=self.scope,
|
||||||
access_token=self.access_token,
|
access_token=self.access_token,
|
||||||
model=self.model,
|
model=self.model,
|
||||||
|
profanity_check=self.profanity_check,
|
||||||
user=self.user,
|
user=self.user,
|
||||||
password=self.password,
|
password=self.password,
|
||||||
timeout=self.timeout,
|
timeout=self.timeout,
|
||||||
@ -93,6 +110,7 @@ class _BaseGigaChat(Serializable):
|
|||||||
cert_file=self.cert_file,
|
cert_file=self.cert_file,
|
||||||
key_file=self.key_file,
|
key_file=self.key_file,
|
||||||
key_file_password=self.key_file_password,
|
key_file_password=self.key_file_password,
|
||||||
|
verbose=self.verbose,
|
||||||
)
|
)
|
||||||
|
|
||||||
@root_validator()
|
@root_validator()
|
||||||
@ -105,6 +123,16 @@ class _BaseGigaChat(Serializable):
|
|||||||
"Could not import gigachat python package. "
|
"Could not import gigachat python package. "
|
||||||
"Please install it with `pip install gigachat`."
|
"Please install it with `pip install gigachat`."
|
||||||
)
|
)
|
||||||
|
fields = set(cls.__fields__.keys())
|
||||||
|
diff = set(values.keys()) - fields
|
||||||
|
if diff:
|
||||||
|
logger.warning(f"Extra fields {diff} in GigaChat class")
|
||||||
|
if "profanity" in fields and values.get("profanity") is False:
|
||||||
|
logger.warning(
|
||||||
|
"'profanity' field is deprecated. Use 'profanity_check' instead."
|
||||||
|
)
|
||||||
|
if values.get("profanity_check") is None:
|
||||||
|
values["profanity_check"] = values.get("profanity")
|
||||||
return values
|
return values
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -113,11 +141,48 @@ class _BaseGigaChat(Serializable):
|
|||||||
return {
|
return {
|
||||||
"temperature": self.temperature,
|
"temperature": self.temperature,
|
||||||
"model": self.model,
|
"model": self.model,
|
||||||
"profanity": self.profanity,
|
"profanity": self.profanity_check,
|
||||||
"streaming": self.streaming,
|
"streaming": self.streaming,
|
||||||
"max_tokens": self.max_tokens,
|
"max_tokens": self.max_tokens,
|
||||||
|
"top_p": self.top_p,
|
||||||
|
"repetition_penalty": self.repetition_penalty,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def tokens_count(
|
||||||
|
self, input_: List[str], model: Optional[str] = None
|
||||||
|
) -> List[gm.TokensCount]:
|
||||||
|
"""Get tokens of string list"""
|
||||||
|
return self._client.tokens_count(input_, model)
|
||||||
|
|
||||||
|
async def atokens_count(
|
||||||
|
self, input_: List[str], model: Optional[str] = None
|
||||||
|
) -> List[gm.TokensCount]:
|
||||||
|
"""Get tokens of strings list (async)"""
|
||||||
|
return await self._client.atokens_count(input_, model)
|
||||||
|
|
||||||
|
def get_models(self) -> gm.Models:
|
||||||
|
"""Get available models of Gigachat"""
|
||||||
|
return self._client.get_models()
|
||||||
|
|
||||||
|
async def aget_models(self) -> gm.Models:
|
||||||
|
"""Get available models of Gigachat (async)"""
|
||||||
|
return await self._client.aget_models()
|
||||||
|
|
||||||
|
def get_model(self, model: str) -> gm.Model:
|
||||||
|
"""Get info about model"""
|
||||||
|
return self._client.get_model(model)
|
||||||
|
|
||||||
|
async def aget_model(self, model: str) -> gm.Model:
|
||||||
|
"""Get info about model (async)"""
|
||||||
|
return await self._client.aget_model(model)
|
||||||
|
|
||||||
|
def get_num_tokens(self, text: str) -> int:
|
||||||
|
"""Count approximate number of tokens"""
|
||||||
|
if self.use_api_for_tokens:
|
||||||
|
return self.tokens_count([text])[0].tokens # type: ignore
|
||||||
|
else:
|
||||||
|
return round(len(text) / 4.6)
|
||||||
|
|
||||||
|
|
||||||
class GigaChat(_BaseGigaChat, BaseLLM):
|
class GigaChat(_BaseGigaChat, BaseLLM):
|
||||||
"""`GigaChat` large language models API.
|
"""`GigaChat` large language models API.
|
||||||
@ -128,20 +193,29 @@ class GigaChat(_BaseGigaChat, BaseLLM):
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
from langchain_community.llms import GigaChat
|
from langchain_community.llms import GigaChat
|
||||||
giga = GigaChat(credentials=..., verify_ssl_certs=False)
|
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
payload_role: str = "user"
|
||||||
|
|
||||||
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
|
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
|
||||||
payload: Dict[str, Any] = {
|
payload: Dict[str, Any] = {
|
||||||
"messages": [{"role": "user", "content": m} for m in messages],
|
"messages": [{"role": self.payload_role, "content": m} for m in messages],
|
||||||
"profanity_check": self.profanity,
|
|
||||||
}
|
}
|
||||||
if self.temperature is not None:
|
|
||||||
payload["temperature"] = self.temperature
|
|
||||||
if self.max_tokens is not None:
|
|
||||||
payload["max_tokens"] = self.max_tokens
|
|
||||||
if self.model:
|
if self.model:
|
||||||
payload["model"] = self.model
|
payload["model"] = self.model
|
||||||
|
if self.profanity_check is not None:
|
||||||
|
payload["profanity_check"] = self.profanity_check
|
||||||
|
if self.temperature is not None:
|
||||||
|
payload["temperature"] = self.temperature
|
||||||
|
if self.top_p is not None:
|
||||||
|
payload["top_p"] = self.top_p
|
||||||
|
if self.max_tokens is not None:
|
||||||
|
payload["max_tokens"] = self.max_tokens
|
||||||
|
if self.repetition_penalty is not None:
|
||||||
|
payload["repetition_penalty"] = self.repetition_penalty
|
||||||
|
if self.update_interval is not None:
|
||||||
|
payload["update_interval"] = self.update_interval
|
||||||
|
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
logger.info("Giga request: %s", payload)
|
logger.info("Giga request: %s", payload)
|
||||||
@ -164,6 +238,7 @@ class GigaChat(_BaseGigaChat, BaseLLM):
|
|||||||
)
|
)
|
||||||
if self.verbose:
|
if self.verbose:
|
||||||
logger.info("Giga response: %s", res.message.content)
|
logger.info("Giga response: %s", res.message.content)
|
||||||
|
|
||||||
token_usage = response.usage
|
token_usage = response.usage
|
||||||
llm_output = {"token_usage": token_usage, "model_name": response.model}
|
llm_output = {"token_usage": token_usage, "model_name": response.model}
|
||||||
return LLMResult(generations=generations, llm_output=llm_output)
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||||||
@ -254,6 +329,5 @@ class GigaChat(_BaseGigaChat, BaseLLM):
|
|||||||
if run_manager:
|
if run_manager:
|
||||||
await run_manager.on_llm_new_token(content)
|
await run_manager.on_llm_new_token(content)
|
||||||
|
|
||||||
def get_num_tokens(self, text: str) -> int:
|
class Config:
|
||||||
"""Count approximate number of tokens"""
|
extra = "allow"
|
||||||
return round(len(text) / 4.6)
|
|
||||||
|
@ -48,6 +48,7 @@ EXPECTED_ALL = [
|
|||||||
"SpacyEmbeddings",
|
"SpacyEmbeddings",
|
||||||
"NLPCloudEmbeddings",
|
"NLPCloudEmbeddings",
|
||||||
"GPT4AllEmbeddings",
|
"GPT4AllEmbeddings",
|
||||||
|
"GigaChatEmbeddings",
|
||||||
"XinferenceEmbeddings",
|
"XinferenceEmbeddings",
|
||||||
"LocalAIEmbeddings",
|
"LocalAIEmbeddings",
|
||||||
"AwaEmbeddings",
|
"AwaEmbeddings",
|
||||||
|
Loading…
Reference in New Issue
Block a user