mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-23 23:29:21 +00:00
Update text2vec.py (#19657)
Add that URL of the embedding tool "text2vec". Fix minor mistakes in the doc-string.
This commit is contained in:
parent
7630e9529c
commit
dc2c9dd4d7
@ -10,6 +10,7 @@ class Text2vecEmbeddings(Embeddings, BaseModel):
|
|||||||
"""text2vec embedding models.
|
"""text2vec embedding models.
|
||||||
|
|
||||||
Install text2vec first, run 'pip install -U text2vec'.
|
Install text2vec first, run 'pip install -U text2vec'.
|
||||||
|
The gitbub repository for text2vec is : https://github.com/shibing624/text2vec
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
@ -17,11 +18,11 @@ class Text2vecEmbeddings(Embeddings, BaseModel):
|
|||||||
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
|
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
|
||||||
|
|
||||||
embedding = Text2vecEmbeddings()
|
embedding = Text2vecEmbeddings()
|
||||||
bookend.embed_documents([
|
embedding.embed_documents([
|
||||||
"This is a CoSENT(Cosine Sentence) model.",
|
"This is a CoSENT(Cosine Sentence) model.",
|
||||||
"It maps sentences to a 768 dimensional dense vector space.",
|
"It maps sentences to a 768 dimensional dense vector space.",
|
||||||
])
|
])
|
||||||
bookend.embed_query(
|
embedding.embed_query(
|
||||||
"It can be used for text matching or semantic search."
|
"It can be used for text matching or semantic search."
|
||||||
)
|
)
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user