diff --git a/libs/langchain/langchain/memory/zep_memory.py b/libs/langchain/langchain/memory/zep_memory.py index be97571aeb0..bac8a4e653f 100644 --- a/libs/langchain/langchain/memory/zep_memory.py +++ b/libs/langchain/langchain/memory/zep_memory.py @@ -9,6 +9,49 @@ from langchain.memory.utils import get_prompt_input_key class _ZepMemory(BaseChatMemory): + """Persist your chain history to the Zep Memory Server. + + The number of messages returned by Zep and when the Zep server summarizes chat + histories is configurable. See the Zep documentation for more details. + + Documentation: https://docs.getzep.com + + Example: + .. code-block:: python + + memory = ZepMemory( + session_id=session_id, # Identifies your user or a user's session + url=ZEP_API_URL, # Your Zep server's URL + api_key=, # Optional + memory_key="history", # Ensure this matches the key used in + # chain's prompt template + return_messages=True, # Does your prompt template expect a string + # or a list of Messages? + ) + chain = LLMChain(memory=memory,...) # Configure your chain to use the ZepMemory + instance + + + Note: + To persist metadata alongside your chat history, your will need to create a + custom Chain class that overrides the `prep_outputs` method to include the metadata + in the call to `self.memory.save_context`. + + + About Zep + ========= + Zep provides long-term conversation storage for LLM apps. The server stores, + summarizes, embeds, indexes, and enriches conversational AI chat + histories, and exposes them via simple, low-latency APIs. + + For server installation instructions and more, see: + https://docs.getzep.com/deployment/quickstart/ + + For more information on the zep-python package, see: + https://github.com/getzep/zep-python + + """ + chat_memory: ZepChatMessageHistory memory_key: str = "history" #: :meta private: @@ -111,45 +154,4 @@ class ZepSearchMemory(_ZepMemory): class ZepBufferMemory(_ZepMemory, ConversationBufferMemory): - """Persist your chain history to the Zep Memory Server. - - The number of messages returned by Zep and when the Zep server summarizes chat - histories is configurable. See the Zep documentation for more details. - - Documentation: https://docs.getzep.com - - Example: - .. code-block:: python - - memory = ZepMemory( - session_id=session_id, # Identifies your user or a user's session - url=ZEP_API_URL, # Your Zep server's URL - api_key=, # Optional - memory_key="history", # Ensure this matches the key used in - # chain's prompt template - return_messages=True, # Does your prompt template expect a string - # or a list of Messages? - ) - chain = LLMChain(memory=memory,...) # Configure your chain to use the ZepMemory - instance - - - Note: - To persist metadata alongside your chat history, your will need to create a - custom Chain class that overrides the `prep_outputs` method to include the metadata - in the call to `self.memory.save_context`. - - - About Zep - ========= - Zep provides long-term conversation storage for LLM apps. The server stores, - summarizes, embeds, indexes, and enriches conversational AI chat - histories, and exposes them via simple, low-latency APIs. - - For server installation instructions and more, see: - https://docs.getzep.com/deployment/quickstart/ - - For more information on the zep-python package, see: - https://github.com/getzep/zep-python - - """ + """"""