mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 13:36:15 +00:00
community[patch]: deprecate langchain_community Chroma in favor of langchain_chroma (#24474)
This commit is contained in:
@@ -50,6 +50,7 @@ def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
|
||||
]
|
||||
|
||||
|
||||
@deprecated(since="0.2.9", removal="0.4", alternative_import="langchain_chroma.Chroma")
|
||||
class Chroma(VectorStore):
|
||||
"""`ChromaDB` vector store.
|
||||
|
||||
|
@@ -1,10 +1,11 @@
|
||||
# flake8: noqa
|
||||
"""Test sentence_transformer embeddings."""
|
||||
|
||||
from langchain_core.vectorstores import InMemoryVectorStore
|
||||
|
||||
from langchain_community.embeddings.sentence_transformer import (
|
||||
SentenceTransformerEmbeddings,
|
||||
)
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
|
||||
def test_sentence_transformer_embedding_documents() -> None:
|
||||
@@ -34,7 +35,7 @@ def test_sentence_transformer_db_query() -> None:
|
||||
query = "what the foo is a bar?"
|
||||
query_vector = embedding.embed_query(query)
|
||||
assert len(query_vector) == 384
|
||||
db = Chroma(embedding_function=embedding)
|
||||
db = InMemoryVectorStore(embedding=embedding)
|
||||
db.add_texts(texts)
|
||||
docs = db.similarity_search_by_vector(query_vector, k=2)
|
||||
assert docs[0].page_content == "we will foo your bar until you can't foo any more"
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from langchain.retrievers.merger_retriever import MergerRetriever
|
||||
from langchain_core.vectorstores import InMemoryVectorStore
|
||||
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
|
||||
def test_merger_retriever_get_relevant_docs() -> None:
|
||||
@@ -17,12 +17,12 @@ def test_merger_retriever_get_relevant_docs() -> None:
|
||||
"Real stupidity beats artificial intelligence every time. TP",
|
||||
]
|
||||
embeddings = OpenAIEmbeddings()
|
||||
retriever_a = Chroma.from_texts(texts_group_a, embedding=embeddings).as_retriever(
|
||||
search_kwargs={"k": 1}
|
||||
)
|
||||
retriever_b = Chroma.from_texts(texts_group_b, embedding=embeddings).as_retriever(
|
||||
search_kwargs={"k": 1}
|
||||
)
|
||||
retriever_a = InMemoryVectorStore.from_texts(
|
||||
texts_group_a, embedding=embeddings
|
||||
).as_retriever(search_kwargs={"k": 1})
|
||||
retriever_b = InMemoryVectorStore.from_texts(
|
||||
texts_group_b, embedding=embeddings
|
||||
).as_retriever(search_kwargs={"k": 1})
|
||||
|
||||
# The Lord of the Retrievers.
|
||||
lotr = MergerRetriever(retrievers=[retriever_a, retriever_b])
|
||||
|
@@ -1,10 +1,11 @@
|
||||
"""Integration test for doc reordering."""
|
||||
|
||||
from langchain_core.vectorstores import InMemoryVectorStore
|
||||
|
||||
from langchain_community.document_transformers.long_context_reorder import (
|
||||
LongContextReorder,
|
||||
)
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import Chroma
|
||||
|
||||
|
||||
def test_long_context_reorder() -> None:
|
||||
@@ -22,9 +23,9 @@ def test_long_context_reorder() -> None:
|
||||
"Larry Bird was an iconic NBA player.",
|
||||
]
|
||||
embeddings = OpenAIEmbeddings()
|
||||
retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever(
|
||||
search_kwargs={"k": 10}
|
||||
)
|
||||
retriever = InMemoryVectorStore.from_texts(
|
||||
texts, embedding=embeddings
|
||||
).as_retriever(search_kwargs={"k": 10})
|
||||
reordering = LongContextReorder()
|
||||
docs = retriever.invoke("Tell me about the Celtics")
|
||||
actual = reordering.transform_documents(docs)
|
||||
|
@@ -11,7 +11,11 @@ from langchain_core.callbacks import (
|
||||
CallbackManagerForRetrieverRun,
|
||||
)
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
|
||||
from langchain_core.vectorstores import (
|
||||
InMemoryVectorStore,
|
||||
VectorStore,
|
||||
VectorStoreRetriever,
|
||||
)
|
||||
|
||||
from langchain_community.chains import PebbloRetrievalQA
|
||||
from langchain_community.chains.pebblo_retrieval.models import (
|
||||
@@ -19,7 +23,6 @@ from langchain_community.chains.pebblo_retrieval.models import (
|
||||
ChainInput,
|
||||
SemanticContext,
|
||||
)
|
||||
from langchain_community.vectorstores.chroma import Chroma
|
||||
from langchain_community.vectorstores.pinecone import Pinecone
|
||||
from tests.unit_tests.llms.fake_llm import FakeLLM
|
||||
|
||||
@@ -49,8 +52,8 @@ def unsupported_retriever() -> FakeRetriever:
|
||||
"""
|
||||
retriever = FakeRetriever()
|
||||
retriever.search_kwargs = {}
|
||||
# Set the class of vectorstore to Chroma
|
||||
retriever.vectorstore.__class__ = Chroma
|
||||
# Set the class of vectorstore
|
||||
retriever.vectorstore.__class__ = InMemoryVectorStore
|
||||
return retriever
|
||||
|
||||
|
||||
|
@@ -67,7 +67,7 @@ class ConversationVectorStoreTokenBufferMemory(ConversationTokenBufferMemory):
|
||||
from langchain.memory.token_buffer_vectorstore_memory import (
|
||||
ConversationVectorStoreTokenBufferMemory
|
||||
)
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_chroma import Chroma
|
||||
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
||||
from langchain_openai import OpenAI
|
||||
|
||||
|
@@ -31,8 +31,8 @@ class ParentDocumentRetriever(MultiVectorRetriever):
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_chroma import Chroma
|
||||
from langchain_community.embeddings import OpenAIEmbeddings
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain.storage import InMemoryStore
|
||||
|
||||
|
Reference in New Issue
Block a user