add model feat table (#10921)

This commit is contained in:
Bagatur 2023-09-22 01:10:27 -07:00 committed by GitHub
parent ee8653f62c
commit dccc20b402
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 278 additions and 30 deletions

View File

@ -19,4 +19,4 @@ jobs:
run: | run: |
# We should not encourage imports directly from main init file # We should not encourage imports directly from main init file
# Expect for hub # Expect for hub
git grep 'from langchain import' docs | grep -vE 'from langchain import (hub)' && exit 1 || exit 0 git grep 'from langchain import' docs/{extras,docs_skeleton,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0

View File

@ -0,0 +1,145 @@
import os
from pathlib import Path
from langchain import chat_models, llms
from langchain.chat_models.base import BaseChatModel, SimpleChatModel
from langchain.llms.base import BaseLLM, LLM
INTEGRATIONS_DIR = (
Path(os.path.abspath(__file__)).parents[1] / "extras" / "integrations"
)
LLM_IGNORE = ("FakeListLLM", "OpenAIChat", "PromptLayerOpenAIChat")
LLM_FEAT_TABLE_CORRECTION = {
"TextGen": {"_astream": False, "_agenerate": False},
"Ollama": {
"_stream": False,
},
"PromptLayerOpenAI": {"batch_generate": False, "batch_agenerate": False},
}
CHAT_MODEL_IGNORE = ("FakeListChatModel", "HumanInputChatModel")
CHAT_MODEL_FEAT_TABLE_CORRECTION = {
"ChatMLflowAIGateway": {"_agenerate": False},
"PromptLayerChatOpenAI": {"_stream": False, "_astream": False},
"ChatKonko": {"_astream": False, "_agenerate": False},
}
LLM_TEMPLATE = """\
---
sidebar_position: 0
sidebar_class_name: hidden
---
# LLMs
import DocCardList from "@theme/DocCardList";
## Features (natively supported)
All `LLM`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `batch`, `abatch`, `stream`, and `astream` methods.
*That is, they all have functioning sync, async, streaming, and batch generation methods.*
This table highlights specifically those integrations that **natively support** batching, streaming, and asynchronous generation (meaning these features are built into the 3rd-party integration).
{table}
<DocCardList />
"""
CHAT_MODEL_TEMPLATE = """\
---
sidebar_position: 1
sidebar_class_name: hidden
---
# Chat models
import DocCardList from "@theme/DocCardList";
## Features (natively supported)
All `ChatModel`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `stream`, and `astream` (and `batch`, `abatch`) methods.
*That is, they all have functioning sync, async and streaming generation methods.*
This table highlights specifically those integrations that **natively support** streaming and asynchronous generation (meaning these features are built into the 3rd-party integration).
{table}
<DocCardList />
"""
def get_llm_table():
llm_feat_table = {}
for cm in llms.__all__:
llm_feat_table[cm] = {}
cls = getattr(llms, cm)
if issubclass(cls, LLM):
for feat in ("_stream", "_astream", ("_acall", "_agenerate")):
if isinstance(feat, tuple):
feat, name = feat
else:
feat, name = feat, feat
llm_feat_table[cm][name] = getattr(cls, feat) != getattr(LLM, feat)
else:
for feat in [
"_stream",
"_astream",
("_generate", "batch_generate"),
"_agenerate",
("_agenerate", "batch_agenerate"),
]:
if isinstance(feat, tuple):
feat, name = feat
else:
feat, name = feat, feat
llm_feat_table[cm][name] = getattr(cls, feat) != getattr(BaseLLM, feat)
final_feats = {
k: v
for k, v in {**llm_feat_table, **LLM_FEAT_TABLE_CORRECTION}.items()
if k not in LLM_IGNORE
}
header = [
"model",
"_agenerate",
"_stream",
"_astream",
"batch_generate",
"batch_agenerate",
]
title = ["Model", "Generate", "Async generate", "Stream", "Async stream", "Batch", "Async batch"]
rows = [title, [":-"] + [":-:"] * (len(title) - 1)]
for llm, feats in sorted(final_feats.items()):
rows += [[llm, ""] + ["" if feats.get(h) else "" for h in header[1:]]]
return "\n".join(["|".join(row) for row in rows])
def get_chat_model_table():
feat_table = {}
for cm in chat_models.__all__:
feat_table[cm] = {}
cls = getattr(chat_models, cm)
if issubclass(cls, SimpleChatModel):
comparison_cls = SimpleChatModel
else:
comparison_cls = BaseChatModel
for feat in ("_stream", "_astream", "_agenerate"):
feat_table[cm][feat] = getattr(cls, feat) != getattr(comparison_cls, feat)
final_feats = {
k: v
for k, v in {**feat_table, **CHAT_MODEL_FEAT_TABLE_CORRECTION}.items()
if k not in CHAT_MODEL_IGNORE
}
header = ["model", "_agenerate", "_stream", "_astream"]
title = ["Model", "Generate", "Async generate", "Stream", "Async stream"]
rows = [title, [":-"] + [":-:"] * (len(title) - 1)]
for llm, feats in sorted(final_feats.items()):
rows += [[llm, ""] + ["" if feats.get(h) else "" for h in header[1:]]]
return "\n".join(["|".join(row) for row in rows])
if __name__ == "__main__":
llm_page = LLM_TEMPLATE.format(table=get_llm_table())
with open(INTEGRATIONS_DIR / "llms" / "index.mdx", "w") as f:
f.write(llm_page)
chat_model_page = CHAT_MODEL_TEMPLATE.format(table=get_chat_model_table())
with open(INTEGRATIONS_DIR / "chat" / "index.mdx", "w") as f:
f.write(chat_model_page)

View File

@ -1,7 +1,6 @@
"""Script for auto-generating api_reference.rst.""" """Script for auto-generating api_reference.rst."""
import importlib import importlib
import inspect import inspect
import os
import typing import typing
from pathlib import Path from pathlib import Path
from typing import TypedDict, Sequence, List, Dict, Literal, Union, Optional from typing import TypedDict, Sequence, List, Dict, Literal, Union, Optional

View File

@ -99,8 +99,8 @@ module.exports = {
label: "Components", label: "Components",
collapsible: false, collapsible: false,
items: [ items: [
{ type: "category", label: "LLMs", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/llms" }], link: {type: "generated-index", slug: "integrations/llms" }}, { type: "category", label: "LLMs", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/llms" }], link: { type: 'doc', id: "integrations/llms/index"}},
{ type: "category", label: "Chat models", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/chat" }], link: {type: "generated-index", slug: "integrations/chat" }}, { type: "category", label: "Chat models", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/chat" }], link: { type: 'doc', id: "integrations/chat/index"}},
{ type: "category", label: "Document loaders", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/document_loaders" }], link: {type: "generated-index", slug: "integrations/document_loaders" }}, { type: "category", label: "Document loaders", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/document_loaders" }], link: {type: "generated-index", slug: "integrations/document_loaders" }},
{ type: "category", label: "Document transformers", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/document_transformers" }], link: {type: "generated-index", slug: "integrations/document_transformers" }}, { type: "category", label: "Document transformers", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/document_transformers" }], link: {type: "generated-index", slug: "integrations/document_transformers" }},
{ type: "category", label: "Text embedding models", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/text_embedding" }], link: {type: "generated-index", slug: "integrations/text_embedding" }}, { type: "category", label: "Text embedding models", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/text_embedding" }], link: {type: "generated-index", slug: "integrations/text_embedding" }},

View File

@ -0,0 +1,36 @@
---
sidebar_position: 1
sidebar_class_name: hidden
---
# Chat models
import DocCardList from "@theme/DocCardList";
## Features (natively supported)
All `ChatModel`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `stream`, and `astream` (and `batch`, `abatch`) methods.
*That is, they all have functioning sync, async and streaming generation methods.*
This table highlights specifically those integrations that **natively support** streaming and asynchronous generation (meaning these features are built into the 3rd-party integration).
Model|Generate|Async generate|Stream|Async stream
:-|:-:|:-:|:-:|:-:
AzureChatOpenAI|✅|✅|✅|✅
BedrockChat|✅|❌|✅|❌
ChatAnthropic|✅|✅|✅|✅
ChatAnyscale|✅|✅|✅|✅
ChatGooglePalm|✅|✅|❌|❌
ChatJavelinAIGateway|✅|✅|❌|❌
ChatKonko|✅|❌|❌|❌
ChatLiteLLM|✅|✅|✅|✅
ChatMLflowAIGateway|✅|❌|❌|❌
ChatOllama|✅|❌|✅|❌
ChatOpenAI|✅|✅|✅|✅
ChatVertexAI|✅|❌|✅|❌
ErnieBotChat|✅|❌|❌|❌
JinaChat|✅|✅|✅|✅
MiniMaxChat|✅|✅|❌|❌
PromptLayerChatOpenAI|✅|❌|❌|❌
QianfanChatEndpoint|✅|✅|✅|✅
<DocCardList />

View File

@ -0,0 +1,91 @@
---
sidebar_position: 0
sidebar_class_name: hidden
---
# LLMs
import DocCardList from "@theme/DocCardList";
## Features (natively supported)
All `LLM`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `batch`, `abatch`, `stream`, and `astream` methods.
*That is, they all have functioning sync, async, streaming, and batch generation methods.*
This table highlights specifically those integrations that **natively support** batching, streaming, and asynchronous generation (meaning these features are built into the 3rd-party integration).
Model|Generate|Async generate|Stream|Async stream|Batch|Async batch
:-|:-:|:-:|:-:|:-:|:-:|:-:
AI21|✅|❌|❌|❌|❌|❌
AlephAlpha|✅|❌|❌|❌|❌|❌
AmazonAPIGateway|✅|❌|❌|❌|❌|❌
Anthropic|✅|✅|✅|✅|❌|❌
Anyscale|✅|❌|❌|❌|❌|❌
Aviary|✅|❌|❌|❌|❌|❌
AzureMLOnlineEndpoint|✅|❌|❌|❌|❌|❌
AzureOpenAI|✅|✅|✅|✅|✅|✅
Banana|✅|❌|❌|❌|❌|❌
Baseten|✅|❌|❌|❌|❌|❌
Beam|✅|❌|❌|❌|❌|❌
Bedrock|✅|❌|✅|❌|❌|❌
CTransformers|✅|✅|❌|❌|❌|❌
CTranslate2|✅|❌|❌|❌|✅|❌
CerebriumAI|✅|❌|❌|❌|❌|❌
ChatGLM|✅|❌|❌|❌|❌|❌
Clarifai|✅|❌|❌|❌|❌|❌
Cohere|✅|✅|❌|❌|❌|❌
Databricks|✅|❌|❌|❌|❌|❌
DeepInfra|✅|❌|❌|❌|❌|❌
DeepSparse|✅|❌|❌|❌|❌|❌
EdenAI|✅|✅|❌|❌|❌|❌
Fireworks|✅|✅|❌|❌|✅|✅
FireworksChat|✅|✅|❌|❌|✅|✅
ForefrontAI|✅|❌|❌|❌|❌|❌
GPT4All|✅|❌|❌|❌|❌|❌
GooglePalm|✅|❌|❌|❌|✅|❌
GooseAI|✅|❌|❌|❌|❌|❌
GradientLLM|✅|✅|❌|❌|❌|❌
HuggingFaceEndpoint|✅|❌|❌|❌|❌|❌
HuggingFaceHub|✅|❌|❌|❌|❌|❌
HuggingFacePipeline|✅|❌|❌|❌|❌|❌
HuggingFaceTextGenInference|✅|✅|✅|✅|❌|❌
HumanInputLLM|✅|❌|❌|❌|❌|❌
JavelinAIGateway|✅|✅|❌|❌|❌|❌
KoboldApiLLM|✅|❌|❌|❌|❌|❌
LlamaCpp|✅|❌|✅|❌|❌|❌
ManifestWrapper|✅|❌|❌|❌|❌|❌
Minimax|✅|❌|❌|❌|❌|❌
MlflowAIGateway|✅|❌|❌|❌|❌|❌
Modal|✅|❌|❌|❌|❌|❌
MosaicML|✅|❌|❌|❌|❌|❌
NIBittensorLLM|✅|❌|❌|❌|❌|❌
NLPCloud|✅|❌|❌|❌|❌|❌
Nebula|✅|❌|❌|❌|❌|❌
OctoAIEndpoint|✅|❌|❌|❌|❌|❌
Ollama|✅|❌|❌|❌|❌|❌
OpaquePrompts|✅|❌|❌|❌|❌|❌
OpenAI|✅|✅|✅|✅|✅|✅
OpenLLM|✅|✅|❌|❌|❌|❌
OpenLM|✅|✅|✅|✅|✅|✅
Petals|✅|❌|❌|❌|❌|❌
PipelineAI|✅|❌|❌|❌|❌|❌
Predibase|✅|❌|❌|❌|❌|❌
PredictionGuard|✅|❌|❌|❌|❌|❌
PromptLayerOpenAI|✅|❌|❌|❌|❌|❌
QianfanLLMEndpoint|✅|✅|✅|✅|❌|❌
RWKV|✅|❌|❌|❌|❌|❌
Replicate|✅|❌|✅|❌|❌|❌
SagemakerEndpoint|✅|❌|❌|❌|❌|❌
SelfHostedHuggingFaceLLM|✅|❌|❌|❌|❌|❌
SelfHostedPipeline|✅|❌|❌|❌|❌|❌
StochasticAI|✅|❌|❌|❌|❌|❌
TextGen|✅|❌|❌|❌|❌|❌
TitanTakeoff|✅|❌|✅|❌|❌|❌
Tongyi|✅|❌|❌|❌|❌|❌
VLLM|✅|❌|❌|❌|✅|❌
VLLMOpenAI|✅|✅|✅|✅|✅|✅
VertexAI|✅|✅|❌|❌|❌|❌
VertexAIModelGarden|✅|✅|❌|❌|❌|❌
Writer|✅|❌|❌|❌|❌|❌
Xinference|✅|❌|❌|❌|❌|❌
<DocCardList />

View File

@ -1,7 +1,6 @@
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional from typing import Any, Dict, Iterator, List, Optional
from langchain.callbacks.manager import ( from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun, CallbackManagerForLLMRun,
) )
from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic
@ -59,17 +58,6 @@ class BedrockChat(BaseChatModel, BedrockBase):
delta = chunk.text delta = chunk.text
yield ChatGenerationChunk(message=AIMessageChunk(content=delta)) yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
raise NotImplementedError(
"""Bedrock doesn't support async requests at the moment."""
)
def _generate( def _generate(
self, self,
messages: List[BaseMessage], messages: List[BaseMessage],
@ -98,14 +86,3 @@ class BedrockChat(BaseChatModel, BedrockBase):
message = AIMessage(content=completion) message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)]) return ChatResult(generations=[ChatGeneration(message=message)])
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
raise NotImplementedError(
"""Bedrock doesn't support async stream requests at the moment."""
)