mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-19 13:23:35 +00:00
add model feat table (#10921)
This commit is contained in:
parent
ee8653f62c
commit
dccc20b402
2
.github/workflows/doc_lint.yml
vendored
2
.github/workflows/doc_lint.yml
vendored
@ -19,4 +19,4 @@ jobs:
|
||||
run: |
|
||||
# We should not encourage imports directly from main init file
|
||||
# Expect for hub
|
||||
git grep 'from langchain import' docs | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
git grep 'from langchain import' docs/{extras,docs_skeleton,snippets} | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
|
||||
|
145
docs/_scripts/model_feat_table.py
Normal file
145
docs/_scripts/model_feat_table.py
Normal file
@ -0,0 +1,145 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from langchain import chat_models, llms
|
||||
from langchain.chat_models.base import BaseChatModel, SimpleChatModel
|
||||
from langchain.llms.base import BaseLLM, LLM
|
||||
|
||||
INTEGRATIONS_DIR = (
|
||||
Path(os.path.abspath(__file__)).parents[1] / "extras" / "integrations"
|
||||
)
|
||||
LLM_IGNORE = ("FakeListLLM", "OpenAIChat", "PromptLayerOpenAIChat")
|
||||
LLM_FEAT_TABLE_CORRECTION = {
|
||||
"TextGen": {"_astream": False, "_agenerate": False},
|
||||
"Ollama": {
|
||||
"_stream": False,
|
||||
},
|
||||
"PromptLayerOpenAI": {"batch_generate": False, "batch_agenerate": False},
|
||||
}
|
||||
CHAT_MODEL_IGNORE = ("FakeListChatModel", "HumanInputChatModel")
|
||||
CHAT_MODEL_FEAT_TABLE_CORRECTION = {
|
||||
"ChatMLflowAIGateway": {"_agenerate": False},
|
||||
"PromptLayerChatOpenAI": {"_stream": False, "_astream": False},
|
||||
"ChatKonko": {"_astream": False, "_agenerate": False},
|
||||
}
|
||||
|
||||
LLM_TEMPLATE = """\
|
||||
---
|
||||
sidebar_position: 0
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
# LLMs
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
## Features (natively supported)
|
||||
All `LLM`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `batch`, `abatch`, `stream`, and `astream` methods.
|
||||
*That is, they all have functioning sync, async, streaming, and batch generation methods.*
|
||||
|
||||
This table highlights specifically those integrations that **natively support** batching, streaming, and asynchronous generation (meaning these features are built into the 3rd-party integration).
|
||||
|
||||
{table}
|
||||
|
||||
<DocCardList />
|
||||
"""
|
||||
|
||||
CHAT_MODEL_TEMPLATE = """\
|
||||
---
|
||||
sidebar_position: 1
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
# Chat models
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
## Features (natively supported)
|
||||
All `ChatModel`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `stream`, and `astream` (and `batch`, `abatch`) methods.
|
||||
*That is, they all have functioning sync, async and streaming generation methods.*
|
||||
|
||||
This table highlights specifically those integrations that **natively support** streaming and asynchronous generation (meaning these features are built into the 3rd-party integration).
|
||||
|
||||
{table}
|
||||
|
||||
<DocCardList />
|
||||
"""
|
||||
|
||||
|
||||
def get_llm_table():
|
||||
llm_feat_table = {}
|
||||
for cm in llms.__all__:
|
||||
llm_feat_table[cm] = {}
|
||||
cls = getattr(llms, cm)
|
||||
if issubclass(cls, LLM):
|
||||
for feat in ("_stream", "_astream", ("_acall", "_agenerate")):
|
||||
if isinstance(feat, tuple):
|
||||
feat, name = feat
|
||||
else:
|
||||
feat, name = feat, feat
|
||||
llm_feat_table[cm][name] = getattr(cls, feat) != getattr(LLM, feat)
|
||||
else:
|
||||
for feat in [
|
||||
"_stream",
|
||||
"_astream",
|
||||
("_generate", "batch_generate"),
|
||||
"_agenerate",
|
||||
("_agenerate", "batch_agenerate"),
|
||||
]:
|
||||
if isinstance(feat, tuple):
|
||||
feat, name = feat
|
||||
else:
|
||||
feat, name = feat, feat
|
||||
llm_feat_table[cm][name] = getattr(cls, feat) != getattr(BaseLLM, feat)
|
||||
final_feats = {
|
||||
k: v
|
||||
for k, v in {**llm_feat_table, **LLM_FEAT_TABLE_CORRECTION}.items()
|
||||
if k not in LLM_IGNORE
|
||||
}
|
||||
|
||||
header = [
|
||||
"model",
|
||||
"_agenerate",
|
||||
"_stream",
|
||||
"_astream",
|
||||
"batch_generate",
|
||||
"batch_agenerate",
|
||||
]
|
||||
title = ["Model", "Generate", "Async generate", "Stream", "Async stream", "Batch", "Async batch"]
|
||||
rows = [title, [":-"] + [":-:"] * (len(title) - 1)]
|
||||
for llm, feats in sorted(final_feats.items()):
|
||||
rows += [[llm, "✅"] + ["✅" if feats.get(h) else "❌" for h in header[1:]]]
|
||||
return "\n".join(["|".join(row) for row in rows])
|
||||
|
||||
|
||||
def get_chat_model_table():
|
||||
feat_table = {}
|
||||
for cm in chat_models.__all__:
|
||||
feat_table[cm] = {}
|
||||
cls = getattr(chat_models, cm)
|
||||
if issubclass(cls, SimpleChatModel):
|
||||
comparison_cls = SimpleChatModel
|
||||
else:
|
||||
comparison_cls = BaseChatModel
|
||||
for feat in ("_stream", "_astream", "_agenerate"):
|
||||
feat_table[cm][feat] = getattr(cls, feat) != getattr(comparison_cls, feat)
|
||||
final_feats = {
|
||||
k: v
|
||||
for k, v in {**feat_table, **CHAT_MODEL_FEAT_TABLE_CORRECTION}.items()
|
||||
if k not in CHAT_MODEL_IGNORE
|
||||
}
|
||||
header = ["model", "_agenerate", "_stream", "_astream"]
|
||||
title = ["Model", "Generate", "Async generate", "Stream", "Async stream"]
|
||||
rows = [title, [":-"] + [":-:"] * (len(title) - 1)]
|
||||
for llm, feats in sorted(final_feats.items()):
|
||||
rows += [[llm, "✅"] + ["✅" if feats.get(h) else "❌" for h in header[1:]]]
|
||||
return "\n".join(["|".join(row) for row in rows])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
llm_page = LLM_TEMPLATE.format(table=get_llm_table())
|
||||
with open(INTEGRATIONS_DIR / "llms" / "index.mdx", "w") as f:
|
||||
f.write(llm_page)
|
||||
chat_model_page = CHAT_MODEL_TEMPLATE.format(table=get_chat_model_table())
|
||||
with open(INTEGRATIONS_DIR / "chat" / "index.mdx", "w") as f:
|
||||
f.write(chat_model_page)
|
@ -1,7 +1,6 @@
|
||||
"""Script for auto-generating api_reference.rst."""
|
||||
import importlib
|
||||
import inspect
|
||||
import os
|
||||
import typing
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Sequence, List, Dict, Literal, Union, Optional
|
||||
|
@ -99,8 +99,8 @@ module.exports = {
|
||||
label: "Components",
|
||||
collapsible: false,
|
||||
items: [
|
||||
{ type: "category", label: "LLMs", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/llms" }], link: {type: "generated-index", slug: "integrations/llms" }},
|
||||
{ type: "category", label: "Chat models", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/chat" }], link: {type: "generated-index", slug: "integrations/chat" }},
|
||||
{ type: "category", label: "LLMs", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/llms" }], link: { type: 'doc', id: "integrations/llms/index"}},
|
||||
{ type: "category", label: "Chat models", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/chat" }], link: { type: 'doc', id: "integrations/chat/index"}},
|
||||
{ type: "category", label: "Document loaders", collapsed: true, items: [{type:"autogenerated", dirName: "integrations/document_loaders" }], link: {type: "generated-index", slug: "integrations/document_loaders" }},
|
||||
{ type: "category", label: "Document transformers", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/document_transformers" }], link: {type: "generated-index", slug: "integrations/document_transformers" }},
|
||||
{ type: "category", label: "Text embedding models", collapsed: true, items: [{type: "autogenerated", dirName: "integrations/text_embedding" }], link: {type: "generated-index", slug: "integrations/text_embedding" }},
|
||||
|
36
docs/extras/integrations/chat/index.mdx
Normal file
36
docs/extras/integrations/chat/index.mdx
Normal file
@ -0,0 +1,36 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
# Chat models
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
## Features (natively supported)
|
||||
All `ChatModel`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `stream`, and `astream` (and `batch`, `abatch`) methods.
|
||||
*That is, they all have functioning sync, async and streaming generation methods.*
|
||||
|
||||
This table highlights specifically those integrations that **natively support** streaming and asynchronous generation (meaning these features are built into the 3rd-party integration).
|
||||
|
||||
Model|Generate|Async generate|Stream|Async stream
|
||||
:-|:-:|:-:|:-:|:-:
|
||||
AzureChatOpenAI|✅|✅|✅|✅
|
||||
BedrockChat|✅|❌|✅|❌
|
||||
ChatAnthropic|✅|✅|✅|✅
|
||||
ChatAnyscale|✅|✅|✅|✅
|
||||
ChatGooglePalm|✅|✅|❌|❌
|
||||
ChatJavelinAIGateway|✅|✅|❌|❌
|
||||
ChatKonko|✅|❌|❌|❌
|
||||
ChatLiteLLM|✅|✅|✅|✅
|
||||
ChatMLflowAIGateway|✅|❌|❌|❌
|
||||
ChatOllama|✅|❌|✅|❌
|
||||
ChatOpenAI|✅|✅|✅|✅
|
||||
ChatVertexAI|✅|❌|✅|❌
|
||||
ErnieBotChat|✅|❌|❌|❌
|
||||
JinaChat|✅|✅|✅|✅
|
||||
MiniMaxChat|✅|✅|❌|❌
|
||||
PromptLayerChatOpenAI|✅|❌|❌|❌
|
||||
QianfanChatEndpoint|✅|✅|✅|✅
|
||||
|
||||
<DocCardList />
|
91
docs/extras/integrations/llms/index.mdx
Normal file
91
docs/extras/integrations/llms/index.mdx
Normal file
@ -0,0 +1,91 @@
|
||||
---
|
||||
sidebar_position: 0
|
||||
sidebar_class_name: hidden
|
||||
---
|
||||
|
||||
# LLMs
|
||||
|
||||
import DocCardList from "@theme/DocCardList";
|
||||
|
||||
## Features (natively supported)
|
||||
All `LLM`s implement the LCEL `Runnable` interface, meaning they all expose functioning `invoke`, `ainvoke`, `batch`, `abatch`, `stream`, and `astream` methods.
|
||||
*That is, they all have functioning sync, async, streaming, and batch generation methods.*
|
||||
|
||||
This table highlights specifically those integrations that **natively support** batching, streaming, and asynchronous generation (meaning these features are built into the 3rd-party integration).
|
||||
|
||||
Model|Generate|Async generate|Stream|Async stream|Batch|Async batch
|
||||
:-|:-:|:-:|:-:|:-:|:-:|:-:
|
||||
AI21|✅|❌|❌|❌|❌|❌
|
||||
AlephAlpha|✅|❌|❌|❌|❌|❌
|
||||
AmazonAPIGateway|✅|❌|❌|❌|❌|❌
|
||||
Anthropic|✅|✅|✅|✅|❌|❌
|
||||
Anyscale|✅|❌|❌|❌|❌|❌
|
||||
Aviary|✅|❌|❌|❌|❌|❌
|
||||
AzureMLOnlineEndpoint|✅|❌|❌|❌|❌|❌
|
||||
AzureOpenAI|✅|✅|✅|✅|✅|✅
|
||||
Banana|✅|❌|❌|❌|❌|❌
|
||||
Baseten|✅|❌|❌|❌|❌|❌
|
||||
Beam|✅|❌|❌|❌|❌|❌
|
||||
Bedrock|✅|❌|✅|❌|❌|❌
|
||||
CTransformers|✅|✅|❌|❌|❌|❌
|
||||
CTranslate2|✅|❌|❌|❌|✅|❌
|
||||
CerebriumAI|✅|❌|❌|❌|❌|❌
|
||||
ChatGLM|✅|❌|❌|❌|❌|❌
|
||||
Clarifai|✅|❌|❌|❌|❌|❌
|
||||
Cohere|✅|✅|❌|❌|❌|❌
|
||||
Databricks|✅|❌|❌|❌|❌|❌
|
||||
DeepInfra|✅|❌|❌|❌|❌|❌
|
||||
DeepSparse|✅|❌|❌|❌|❌|❌
|
||||
EdenAI|✅|✅|❌|❌|❌|❌
|
||||
Fireworks|✅|✅|❌|❌|✅|✅
|
||||
FireworksChat|✅|✅|❌|❌|✅|✅
|
||||
ForefrontAI|✅|❌|❌|❌|❌|❌
|
||||
GPT4All|✅|❌|❌|❌|❌|❌
|
||||
GooglePalm|✅|❌|❌|❌|✅|❌
|
||||
GooseAI|✅|❌|❌|❌|❌|❌
|
||||
GradientLLM|✅|✅|❌|❌|❌|❌
|
||||
HuggingFaceEndpoint|✅|❌|❌|❌|❌|❌
|
||||
HuggingFaceHub|✅|❌|❌|❌|❌|❌
|
||||
HuggingFacePipeline|✅|❌|❌|❌|❌|❌
|
||||
HuggingFaceTextGenInference|✅|✅|✅|✅|❌|❌
|
||||
HumanInputLLM|✅|❌|❌|❌|❌|❌
|
||||
JavelinAIGateway|✅|✅|❌|❌|❌|❌
|
||||
KoboldApiLLM|✅|❌|❌|❌|❌|❌
|
||||
LlamaCpp|✅|❌|✅|❌|❌|❌
|
||||
ManifestWrapper|✅|❌|❌|❌|❌|❌
|
||||
Minimax|✅|❌|❌|❌|❌|❌
|
||||
MlflowAIGateway|✅|❌|❌|❌|❌|❌
|
||||
Modal|✅|❌|❌|❌|❌|❌
|
||||
MosaicML|✅|❌|❌|❌|❌|❌
|
||||
NIBittensorLLM|✅|❌|❌|❌|❌|❌
|
||||
NLPCloud|✅|❌|❌|❌|❌|❌
|
||||
Nebula|✅|❌|❌|❌|❌|❌
|
||||
OctoAIEndpoint|✅|❌|❌|❌|❌|❌
|
||||
Ollama|✅|❌|❌|❌|❌|❌
|
||||
OpaquePrompts|✅|❌|❌|❌|❌|❌
|
||||
OpenAI|✅|✅|✅|✅|✅|✅
|
||||
OpenLLM|✅|✅|❌|❌|❌|❌
|
||||
OpenLM|✅|✅|✅|✅|✅|✅
|
||||
Petals|✅|❌|❌|❌|❌|❌
|
||||
PipelineAI|✅|❌|❌|❌|❌|❌
|
||||
Predibase|✅|❌|❌|❌|❌|❌
|
||||
PredictionGuard|✅|❌|❌|❌|❌|❌
|
||||
PromptLayerOpenAI|✅|❌|❌|❌|❌|❌
|
||||
QianfanLLMEndpoint|✅|✅|✅|✅|❌|❌
|
||||
RWKV|✅|❌|❌|❌|❌|❌
|
||||
Replicate|✅|❌|✅|❌|❌|❌
|
||||
SagemakerEndpoint|✅|❌|❌|❌|❌|❌
|
||||
SelfHostedHuggingFaceLLM|✅|❌|❌|❌|❌|❌
|
||||
SelfHostedPipeline|✅|❌|❌|❌|❌|❌
|
||||
StochasticAI|✅|❌|❌|❌|❌|❌
|
||||
TextGen|✅|❌|❌|❌|❌|❌
|
||||
TitanTakeoff|✅|❌|✅|❌|❌|❌
|
||||
Tongyi|✅|❌|❌|❌|❌|❌
|
||||
VLLM|✅|❌|❌|❌|✅|❌
|
||||
VLLMOpenAI|✅|✅|✅|✅|✅|✅
|
||||
VertexAI|✅|✅|❌|❌|❌|❌
|
||||
VertexAIModelGarden|✅|✅|❌|❌|❌|❌
|
||||
Writer|✅|❌|❌|❌|❌|❌
|
||||
Xinference|✅|❌|❌|❌|❌|❌
|
||||
|
||||
<DocCardList />
|
@ -1,7 +1,6 @@
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic
|
||||
@ -59,17 +58,6 @@ class BedrockChat(BaseChatModel, BedrockBase):
|
||||
delta = chunk.text
|
||||
yield ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
||||
|
||||
def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
raise NotImplementedError(
|
||||
"""Bedrock doesn't support async requests at the moment."""
|
||||
)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
@ -98,14 +86,3 @@ class BedrockChat(BaseChatModel, BedrockBase):
|
||||
|
||||
message = AIMessage(content=completion)
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
raise NotImplementedError(
|
||||
"""Bedrock doesn't support async stream requests at the moment."""
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user