adapt Jina Embeddings to new Jina AI Embedding API (#13658)

- **Description:** Adapt JinaEmbeddings to run with the new Jina AI
Embedding platform
- **Twitter handle:** https://twitter.com/JinaAI_

---------

Co-authored-by: Joan Fontanals Martinez <joan.fontanals.martinez@jina.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
Joan Fontanals
2023-12-05 05:40:33 +01:00
committed by GitHub
parent e0c03d6c44
commit dcccf8fa66
3 changed files with 63 additions and 138 deletions

View File

@@ -1,4 +1,3 @@
import os
from typing import Any, Dict, List, Optional
import requests
@@ -7,69 +6,54 @@ from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain.utils import get_from_dict_or_env
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
class JinaEmbeddings(BaseModel, Embeddings):
"""Jina embedding models."""
client: Any #: :meta private:
model_name: str = "ViT-B-32::openai"
"""Model name to use."""
jina_auth_token: Optional[str] = None
jina_api_url: str = "https://api.clip.jina.ai/api/v1/models/"
request_headers: Optional[dict] = None
session: Any #: :meta private:
model_name: str = "jina-embeddings-v2-base-en"
jina_api_key: Optional[str] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
# Set Auth
jina_auth_token = get_from_dict_or_env(
values, "jina_auth_token", "JINA_AUTH_TOKEN"
try:
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
except ValueError as original_exc:
try:
jina_api_key = get_from_dict_or_env(
values, "jina_auth_token", "JINA_AUTH_TOKEN"
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {jina_api_key}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["jina_auth_token"] = jina_auth_token
values["request_headers"] = (("authorization", jina_auth_token),)
# Test that package is installed
try:
import jina
except ImportError:
raise ImportError(
"Could not import `jina` python package. "
"Please install it with `pip install jina`."
)
# Setup client
jina_api_url = os.environ.get("JINA_API_URL", values["jina_api_url"])
model_name = values["model_name"]
try:
resp = requests.get(
jina_api_url + f"?model_name={model_name}",
headers={"Authorization": jina_auth_token},
)
if resp.status_code == 401:
raise ValueError(
"The given Jina auth token is invalid. "
"Please check your Jina auth token."
)
elif resp.status_code == 404:
raise ValueError(
f"The given model name `{model_name}` is not valid. "
f"Please go to https://cloud.jina.ai/user/inference "
f"and create a model with the given model name."
)
resp.raise_for_status()
endpoint = resp.json()["endpoints"]["grpc"]
values["client"] = jina.Client(host=endpoint)
except requests.exceptions.HTTPError as err:
raise ValueError(f"Error: {err!r}")
values["session"] = session
return values
def _post(self, docs: List[Any], **kwargs: Any) -> Any:
payload = dict(inputs=docs, metadata=self.request_headers, **kwargs)
return self.client.post(on="/encode", **payload)
def _embed(self, texts: List[str]) -> List[List[float]]:
# Call Jina AI Embedding API
resp = self.session.post( # type: ignore
JINA_API_URL, json={"input": texts, "model": self.model_name}
).json()
if "data" not in resp:
raise RuntimeError(resp["detail"])
embeddings = resp["data"]
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
# Return just the embeddings
return [result["embedding"] for result in sorted_embeddings]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Jina's embedding endpoint.
@@ -78,12 +62,7 @@ class JinaEmbeddings(BaseModel, Embeddings):
Returns:
List of embeddings, one for each text.
"""
from docarray import Document, DocumentArray
embeddings = self._post(
docs=DocumentArray([Document(text=t) for t in texts])
).embeddings
return [list(map(float, e)) for e in embeddings]
return self._embed(texts)
def embed_query(self, text: str) -> List[float]:
"""Call out to Jina's embedding endpoint.
@@ -92,7 +71,4 @@ class JinaEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
from docarray import Document, DocumentArray
embedding = self._post(docs=DocumentArray([Document(text=text)])).embeddings[0]
return list(map(float, embedding))
return self._embed([text])[0]