mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-05 20:58:25 +00:00
Add OpenLM LLM multi-provider (#4993)
OpenLM is a zero-dependency OpenAI-compatible LLM provider that can call different inference endpoints directly via HTTP. It implements the OpenAI Completion class so that it can be used as a drop-in replacement for the OpenAI API. This changeset utilizes BaseOpenAI for minimal added code. --------- Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This commit is contained in:
parent
69de33e024
commit
de6a401a22
133
docs/modules/models/llms/integrations/openlm.ipynb
Normal file
133
docs/modules/models/llms/integrations/openlm.ipynb
Normal file
@ -0,0 +1,133 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# OpenLM\n",
|
||||
"[OpenLM](https://github.com/r2d4/openlm) is a zero-dependency OpenAI-compatible LLM provider that can call different inference endpoints directly via HTTP. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"It implements the OpenAI Completion class so that it can be used as a drop-in replacement for the OpenAI API. This changeset utilizes BaseOpenAI for minimal added code.\n",
|
||||
"\n",
|
||||
"This examples goes over how to use LangChain to interact with both OpenAI and HuggingFace. You'll need API keys from both."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup\n",
|
||||
"Install dependencies and set API keys."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Uncomment to install openlm and openai if you haven't already\n",
|
||||
"\n",
|
||||
"# !pip install openlm\n",
|
||||
"# !pip install openai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from getpass import getpass\n",
|
||||
"import os\n",
|
||||
"import subprocess\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Check if OPENAI_API_KEY environment variable is set\n",
|
||||
"if \"OPENAI_API_KEY\" not in os.environ:\n",
|
||||
" print(\"Enter your OpenAI API key:\")\n",
|
||||
" os.environ[\"OPENAI_API_KEY\"] = getpass()\n",
|
||||
"\n",
|
||||
"# Check if HF_API_TOKEN environment variable is set\n",
|
||||
"if \"HF_API_TOKEN\" not in os.environ:\n",
|
||||
" print(\"Enter your HuggingFace Hub API key:\")\n",
|
||||
" os.environ[\"HF_API_TOKEN\"] = getpass()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Using LangChain with OpenLM\n",
|
||||
"\n",
|
||||
"Here we're going to call two models in an LLMChain, `text-davinci-003` from OpenAI and `gpt2` on HuggingFace."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import OpenLM\n",
|
||||
"from langchain import PromptTemplate, LLMChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Model: text-davinci-003\n",
|
||||
"Result: France is a country in Europe. The capital of France is Paris.\n",
|
||||
"Model: huggingface.co/gpt2\n",
|
||||
"Result: Question: What is the capital of France?\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step. I am not going to lie, this is a complicated issue, and I don't see any solutions to all this, but it is still far more\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question = \"What is the capital of France?\"\n",
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
|
||||
"\n",
|
||||
"for model in [\"text-davinci-003\", \"huggingface.co/gpt2\"]:\n",
|
||||
" llm = OpenLM(model=model)\n",
|
||||
" llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||||
" result = llm_chain.run(question)\n",
|
||||
" print(\"\"\"Model: {}\n",
|
||||
"Result: {}\"\"\".format(model, result))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -24,6 +24,7 @@ from langchain.llms.llamacpp import LlamaCpp
|
||||
from langchain.llms.modal import Modal
|
||||
from langchain.llms.nlpcloud import NLPCloud
|
||||
from langchain.llms.openai import AzureOpenAI, OpenAI, OpenAIChat
|
||||
from langchain.llms.openlm import OpenLM
|
||||
from langchain.llms.petals import Petals
|
||||
from langchain.llms.pipelineai import PipelineAI
|
||||
from langchain.llms.predictionguard import PredictionGuard
|
||||
@ -53,6 +54,7 @@ __all__ = [
|
||||
"NLPCloud",
|
||||
"OpenAI",
|
||||
"OpenAIChat",
|
||||
"OpenLM",
|
||||
"Petals",
|
||||
"PipelineAI",
|
||||
"HuggingFaceEndpoint",
|
||||
@ -96,6 +98,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
||||
"nlpcloud": NLPCloud,
|
||||
"human-input": HumanInputLLM,
|
||||
"openai": OpenAI,
|
||||
"openlm": OpenLM,
|
||||
"petals": Petals,
|
||||
"pipelineai": PipelineAI,
|
||||
"huggingface_pipeline": HuggingFacePipeline,
|
||||
|
26
langchain/llms/openlm.py
Normal file
26
langchain/llms/openlm.py
Normal file
@ -0,0 +1,26 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import root_validator
|
||||
|
||||
from langchain.llms.openai import BaseOpenAI
|
||||
|
||||
|
||||
class OpenLM(BaseOpenAI):
|
||||
@property
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
return {**{"model": self.model_name}, **super()._invocation_params}
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
try:
|
||||
import openlm
|
||||
|
||||
values["client"] = openlm.Completion
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import openlm python package. "
|
||||
"Please install it with `pip install openlm`."
|
||||
)
|
||||
if values["streaming"]:
|
||||
raise ValueError("Streaming not supported with openlm")
|
||||
return values
|
21
poetry.lock
generated
21
poetry.lock
generated
@ -5277,6 +5277,21 @@ files = [
|
||||
[package.dependencies]
|
||||
pydantic = ">=1.8.2"
|
||||
|
||||
[[package]]
|
||||
name = "openlm"
|
||||
version = "0.0.5"
|
||||
description = "Drop-in OpenAI-compatible that can call LLMs from other providers"
|
||||
category = "main"
|
||||
optional = true
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
files = [
|
||||
{file = "openlm-0.0.5-py3-none-any.whl", hash = "sha256:9fcbbc575d2869e2a6c0b00827f9be2189c067c2de4bf03ef3cbdf488367ae93"},
|
||||
{file = "openlm-0.0.5.tar.gz", hash = "sha256:0eb3fd7a9e4f7b4248931ff2f0dc91c525d990b99956886861a1b3f9868bc451"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
requests = ">=2,<3"
|
||||
|
||||
[[package]]
|
||||
name = "opensearch-py"
|
||||
version = "2.2.0"
|
||||
@ -10445,13 +10460,13 @@ cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\
|
||||
cffi = ["cffi (>=1.11)"]
|
||||
|
||||
[extras]
|
||||
all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "lark", "lxml", "manifest-ml", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "spacy", "steamship", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
|
||||
all = ["O365", "aleph-alpha-client", "anthropic", "arxiv", "atlassian-python-api", "azure-cosmos", "azure-identity", "beautifulsoup4", "clickhouse-connect", "cohere", "deeplake", "docarray", "duckduckgo-search", "elasticsearch", "faiss-cpu", "google-api-python-client", "google-search-results", "gptcache", "html2text", "huggingface_hub", "jina", "jinja2", "jq", "lancedb", "lark", "lxml", "manifest-ml", "neo4j", "networkx", "nlpcloud", "nltk", "nomic", "openai", "openlm", "opensearch-py", "pdfminer-six", "pexpect", "pgvector", "pinecone-client", "pinecone-text", "psycopg2-binary", "pyowm", "pypdf", "pytesseract", "pyvespa", "qdrant-client", "redis", "requests-toolbelt", "sentence-transformers", "spacy", "steamship", "tensorflow-text", "tiktoken", "torch", "transformers", "weaviate-client", "wikipedia", "wolframalpha"]
|
||||
azure = ["azure-core", "azure-cosmos", "azure-identity", "openai"]
|
||||
cohere = ["cohere"]
|
||||
docarray = ["docarray"]
|
||||
embeddings = ["sentence-transformers"]
|
||||
extended-testing = ["atlassian-python-api", "beautifulsoup4", "beautifulsoup4", "chardet", "gql", "html2text", "jq", "lxml", "pandas", "pdfminer-six", "psychicapi", "pymupdf", "pypdf", "pypdfium2", "requests-toolbelt", "telethon", "tqdm", "zep-python"]
|
||||
llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "torch", "transformers"]
|
||||
llms = ["anthropic", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openlm", "torch", "transformers"]
|
||||
openai = ["openai", "tiktoken"]
|
||||
qdrant = ["qdrant-client"]
|
||||
text-helpers = ["chardet"]
|
||||
@ -10459,4 +10474,4 @@ text-helpers = ["chardet"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "52fa365939f4bf1a9f5a93c9dfc8f0fe77a5e7989ff2c1caf0392044b72e08dc"
|
||||
content-hash = "cba33c7d2dc43649ad0ededc7b29f0bfeb9cbba1b2bbbc439b06cb608e678b9c"
|
||||
|
@ -91,6 +91,7 @@ psychicapi = {version = "^0.2", optional = true}
|
||||
zep-python = {version="^0.25", optional=true}
|
||||
chardet = {version="^5.1.0", optional=true}
|
||||
requests-toolbelt = {version = "^1.0.0", optional = true}
|
||||
openlm = {version = "^0.0.5", optional = true}
|
||||
|
||||
[tool.poetry.group.docs.dependencies]
|
||||
autodoc_pydantic = "^1.8.0"
|
||||
@ -175,7 +176,7 @@ playwright = "^1.28.0"
|
||||
setuptools = "^67.6.1"
|
||||
|
||||
[tool.poetry.extras]
|
||||
llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
llms = ["anthropic", "cohere", "openai", "openlm", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
qdrant = ["qdrant-client"]
|
||||
openai = ["openai", "tiktoken"]
|
||||
text_helpers = ["chardet"]
|
||||
@ -241,6 +242,7 @@ all = [
|
||||
"lxml",
|
||||
"requests-toolbelt",
|
||||
"neo4j",
|
||||
"openlm"
|
||||
]
|
||||
|
||||
# An extra used to be able to add extended testing.
|
||||
|
8
tests/integration_tests/llms/test_openlm.py
Normal file
8
tests/integration_tests/llms/test_openlm.py
Normal file
@ -0,0 +1,8 @@
|
||||
from langchain.llms.openlm import OpenLM
|
||||
|
||||
|
||||
def test_openlm_call() -> None:
|
||||
"""Test valid call to openlm."""
|
||||
llm = OpenLM(model_name="dolly-v2-7b", max_tokens=10)
|
||||
output = llm(prompt="Say foo:")
|
||||
assert isinstance(output, str)
|
Loading…
Reference in New Issue
Block a user