mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-15 06:26:12 +00:00
cohere, docs: update imports and installs to langchain_cohere (#19918)
cohere: update imports and installs to langchain_cohere --------- Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
committed by
GitHub
parent
146d1a6347
commit
de6c0cf248
@@ -1 +1,93 @@
|
||||
# langchain-cohere
|
||||
# Cohere
|
||||
|
||||
>[Cohere](https://cohere.ai/about) is a Canadian startup that provides natural language processing models
|
||||
> that help companies improve human-machine interactions.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python SDK :
|
||||
```bash
|
||||
pip install langchain-cohere
|
||||
```
|
||||
|
||||
Get a [Cohere api key](https://dashboard.cohere.ai/) and set it as an environment variable (`COHERE_API_KEY`)
|
||||
|
||||
## Cohere langchain integrations
|
||||
|
||||
| API | description | Endpoint docs | Import | Example usage |
|
||||
| ---------------- | -------------------------------- | ------------------------------------------------------ | -------------------------------------------------------------------- | ------------------------------------------------------------- |
|
||||
| Chat | Build chat bots | [chat](https://docs.cohere.com/reference/chat) | `from langchain_cohere import ChatCohere` | [cohere.ipynb](/docs/integrations/chat/cohere) |
|
||||
| LLM | Generate text | [generate](https://docs.cohere.com/reference/generate) | `from langchain_cohere import Cohere` | [cohere.ipynb](/docs/integrations/llms/cohere) |
|
||||
| RAG Retriever | Connect to external data sources | [chat + rag](https://docs.cohere.com/reference/chat) | `from langchain.retrievers import CohereRagRetriever` | [cohere.ipynb](/docs/integrations/retrievers/cohere) |
|
||||
| Text Embedding | Embed strings to vectors | [embed](https://docs.cohere.com/reference/embed) | `from langchain_cohere import CohereEmbeddings` | [cohere.ipynb](/docs/integrations/text_embedding/cohere) |
|
||||
| Rerank Retriever | Rank strings based on relevance | [rerank](https://docs.cohere.com/reference/rerank) | `from langchain.retrievers.document_compressors import CohereRerank` | [cohere.ipynb](/docs/integrations/retrievers/cohere-reranker) |
|
||||
|
||||
## Quick copy examples
|
||||
|
||||
### Chat
|
||||
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
from langchain_core.messages import HumanMessage
|
||||
chat = ChatCohere()
|
||||
messages = [HumanMessage(content="knock knock")]
|
||||
print(chat(messages))
|
||||
```
|
||||
|
||||
### LLM
|
||||
|
||||
|
||||
```python
|
||||
from langchain_cohere import Cohere
|
||||
|
||||
llm = Cohere(model="command")
|
||||
print(llm.invoke("Come up with a pet name"))
|
||||
```
|
||||
|
||||
### ReAct Agent
|
||||
|
||||
```python
|
||||
from langchain_community.tools.tavily_search import TavilySearchResults
|
||||
from langchain_cohere import ChatCohere, create_cohere_react_agent
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.agents import AgentExecutor
|
||||
|
||||
llm = ChatCohere()
|
||||
|
||||
internet_search = TavilySearchResults(max_results=4)
|
||||
internet_search.name = "internet_search"
|
||||
internet_search.description = "Route a user query to the internet"
|
||||
|
||||
prompt = ChatPromptTemplate.from_template("{input}")
|
||||
|
||||
agent = create_cohere_react_agent(
|
||||
llm,
|
||||
[internet_search],
|
||||
prompt
|
||||
)
|
||||
|
||||
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)```
|
||||
|
||||
agent_executor.invoke({
|
||||
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
|
||||
})
|
||||
```
|
||||
|
||||
### RAG Retriever
|
||||
|
||||
```python
|
||||
from langchain_cohere import ChatCohere
|
||||
from langchain.retrievers import CohereRagRetriever
|
||||
from langchain_core.documents import Document
|
||||
|
||||
rag = CohereRagRetriever(llm=ChatCohere())
|
||||
print(rag.get_relevant_documents("What is cohere ai?"))
|
||||
```
|
||||
|
||||
### Text Embedding
|
||||
|
||||
```python
|
||||
from langchain_cohere import CohereEmbeddings
|
||||
|
||||
embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
|
||||
print(embeddings.embed_documents(["This is a test document."]))
|
||||
```
|
||||
|
@@ -99,8 +99,7 @@
|
||||
"from langchain.agents import AgentExecutor\n",
|
||||
"from langchain.retrievers import WikipediaRetriever\n",
|
||||
"from langchain.tools.retriever import create_retriever_tool\n",
|
||||
"from langchain_cohere import create_cohere_tools_agent\n",
|
||||
"from langchain_cohere.chat_models import ChatCohere\n",
|
||||
"from langchain_cohere import create_cohere_tools_agent, ChatCohere\n",
|
||||
"from langchain_core.prompts import ChatPromptTemplate"
|
||||
]
|
||||
},
|
||||
|
@@ -42,7 +42,7 @@ class CohereEmbeddings(BaseModel, Embeddings):
|
||||
"""Maximum number of retries to make when generating."""
|
||||
request_timeout: Optional[float] = None
|
||||
"""Timeout in seconds for the Cohere API request."""
|
||||
user_agent: str = "langchain"
|
||||
user_agent: str = "langchain:partner"
|
||||
"""Identifier for the application making the request."""
|
||||
|
||||
base_url: Optional[str] = None
|
||||
|
Reference in New Issue
Block a user