mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-07 14:03:26 +00:00
Add MosaicML inference endpoints (#4607)
# Add MosaicML inference endpoints This PR adds support in langchain for MosaicML inference endpoints. We both serve a select few open source models, and allow customers to deploy their own models using our inference service. Docs are here (https://docs.mosaicml.com/en/latest/inference.html), and sign up form is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not intimately familiar with the details of langchain, or the contribution process, so please let me know if there is anything that needs fixing or this is the wrong way to submit a new integration, thanks! I'm also not sure what the procedure is for integration tests. I have tested locally with my api key. ## Who can review? @hwchase17 --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
105
docs/modules/models/llms/integrations/mosaicml.ipynb
Normal file
105
docs/modules/models/llms/integrations/mosaicml.ipynb
Normal file
@@ -0,0 +1,105 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MosaicML\n",
|
||||
"\n",
|
||||
"[MosaicML](https://docs.mosaicml.com/en/latest/inference.html) offers a managed inference service. You can either use a variety of open source models, or deploy your own.\n",
|
||||
"\n",
|
||||
"This example goes over how to use LangChain to interact with MosaicML Inference for text completion."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain\n",
|
||||
"\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"MOSAICML_API_TOKEN = getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"MOSAICML_API_TOKEN\"] = MOSAICML_API_TOKEN"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import MosaicML\n",
|
||||
"from langchain import PromptTemplate, LLMChain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Question: {question}\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = MosaicML(inject_instruction_format=True, model_kwargs={'do_sample': False})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"question = \"What is one good reason why you should train a large language model on domain specific data?\"\n",
|
||||
"\n",
|
||||
"llm_chain.run(question)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
109
docs/modules/models/text_embedding/examples/mosaicml.ipynb
Normal file
109
docs/modules/models/text_embedding/examples/mosaicml.ipynb
Normal file
@@ -0,0 +1,109 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# MosaicML embeddings\n",
|
||||
"\n",
|
||||
"[MosaicML](https://docs.mosaicml.com/en/latest/inference.html) offers a managed inference service. You can either use a variety of open source models, or deploy your own.\n",
|
||||
"\n",
|
||||
"This example goes over how to use LangChain to interact with MosaicML Inference for text embedding."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# sign up for an account: https://forms.mosaicml.com/demo?utm_source=langchain\n",
|
||||
"\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"MOSAICML_API_TOKEN = getpass()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"MOSAICML_API_TOKEN\"] = MOSAICML_API_TOKEN"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings import MosaicMLInstructorEmbeddings"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"embeddings = MosaicMLInstructorEmbeddings(\n",
|
||||
" query_instruction=\"Represent the query for retrieval: \"\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"query_text = \"This is a test query.\"\n",
|
||||
"query_result = embeddings.embed_query(query_text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"document_text = \"This is a test document.\"\n",
|
||||
"document_result = embeddings.embed_documents([document_text])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"query_numpy = np.array(query_result)\n",
|
||||
"document_numpy = np.array(document_result[0])\n",
|
||||
"similarity = np.dot(query_numpy, document_numpy) / (np.linalg.norm(query_numpy)*np.linalg.norm(document_numpy))\n",
|
||||
"print(f\"Cosine similarity between document and query: {similarity}\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Reference in New Issue
Block a user