mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-13 16:36:06 +00:00
Revert "anthropic: stream token usage" (#22624)
Reverts langchain-ai/langchain#20180
This commit is contained in:
parent
0d495f3f63
commit
e08879147b
@ -43,7 +43,6 @@ from langchain_core.messages import (
|
||||
ToolCall,
|
||||
ToolMessage,
|
||||
)
|
||||
from langchain_core.messages.ai import UsageMetadata
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import (
|
||||
@ -654,20 +653,14 @@ class ChatAnthropic(BaseChatModel):
|
||||
message_chunk = AIMessageChunk(
|
||||
content=message.content,
|
||||
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
|
||||
usage_metadata=message.usage_metadata,
|
||||
)
|
||||
yield ChatGenerationChunk(message=message_chunk)
|
||||
else:
|
||||
yield cast(ChatGenerationChunk, result.generations[0])
|
||||
return
|
||||
full_generation_info: dict = {}
|
||||
with self._client.messages.stream(**params) as stream:
|
||||
for text in stream.text_stream:
|
||||
chunk, full_generation_info = _make_chat_generation_chunk(
|
||||
text,
|
||||
stream.current_message_snapshot.model_dump(),
|
||||
full_generation_info,
|
||||
)
|
||||
chunk = ChatGenerationChunk(message=AIMessageChunk(content=text))
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(text, chunk=chunk)
|
||||
yield chunk
|
||||
@ -699,20 +692,14 @@ class ChatAnthropic(BaseChatModel):
|
||||
message_chunk = AIMessageChunk(
|
||||
content=message.content,
|
||||
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
|
||||
usage_metadata=message.usage_metadata,
|
||||
)
|
||||
yield ChatGenerationChunk(message=message_chunk)
|
||||
else:
|
||||
yield cast(ChatGenerationChunk, result.generations[0])
|
||||
return
|
||||
full_generation_info: dict = {}
|
||||
async with self._async_client.messages.stream(**params) as stream:
|
||||
async for text in stream.text_stream:
|
||||
chunk, full_generation_info = _make_chat_generation_chunk(
|
||||
text,
|
||||
stream.current_message_snapshot.model_dump(),
|
||||
full_generation_info,
|
||||
)
|
||||
chunk = ChatGenerationChunk(message=AIMessageChunk(content=text))
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(text, chunk=chunk)
|
||||
yield chunk
|
||||
@ -1077,59 +1064,6 @@ def _lc_tool_calls_to_anthropic_tool_use_blocks(
|
||||
return blocks
|
||||
|
||||
|
||||
def _make_chat_generation_chunk(
|
||||
text: str, message_dump: dict, full_generation_info: dict
|
||||
) -> Tuple[ChatGenerationChunk, dict]:
|
||||
"""Collect metadata and make ChatGenerationChunk.
|
||||
|
||||
Args:
|
||||
text: text of the message chunk
|
||||
message_dump: dict with metadata of the message chunk
|
||||
full_generation_info: dict collecting metadata for full stream
|
||||
|
||||
Returns:
|
||||
Tuple with ChatGenerationChunk and updated full_generation_info
|
||||
"""
|
||||
generation_info = {}
|
||||
usage_metadata: Optional[UsageMetadata] = None
|
||||
for k, v in message_dump.items():
|
||||
if k in ("content", "role", "type") or (
|
||||
k in full_generation_info and k not in ("usage", "stop_reason")
|
||||
):
|
||||
continue
|
||||
elif k == "usage":
|
||||
input_tokens = v.get("input_tokens", 0)
|
||||
output_tokens = v.get("output_tokens", 0)
|
||||
if "usage" not in full_generation_info:
|
||||
full_generation_info[k] = v
|
||||
usage_metadata = UsageMetadata(
|
||||
input_tokens=input_tokens,
|
||||
output_tokens=output_tokens,
|
||||
total_tokens=input_tokens + output_tokens,
|
||||
)
|
||||
else:
|
||||
seen_input_tokens = full_generation_info[k].get("input_tokens", 0)
|
||||
# Anthropic returns the same input token count for each message in a
|
||||
# stream. To avoid double counting, we only count the input tokens
|
||||
# once. After that, we set the input tokens to zero.
|
||||
new_input_tokens = 0 if seen_input_tokens else input_tokens
|
||||
usage_metadata = UsageMetadata(
|
||||
input_tokens=new_input_tokens,
|
||||
output_tokens=output_tokens,
|
||||
total_tokens=new_input_tokens + output_tokens,
|
||||
)
|
||||
else:
|
||||
full_generation_info[k] = v
|
||||
generation_info[k] = v
|
||||
return (
|
||||
ChatGenerationChunk(
|
||||
message=AIMessageChunk(content=text, usage_metadata=usage_metadata),
|
||||
generation_info=generation_info,
|
||||
),
|
||||
full_generation_info,
|
||||
)
|
||||
|
||||
|
||||
@deprecated(since="0.1.0", removal="0.3.0", alternative="ChatAnthropic")
|
||||
class ChatAnthropicMessages(ChatAnthropic):
|
||||
pass
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""Test ChatAnthropic chat model."""
|
||||
|
||||
import json
|
||||
from typing import List, Optional
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from langchain_core.callbacks import CallbackManager
|
||||
@ -9,7 +9,6 @@ from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
ToolMessage,
|
||||
@ -29,80 +28,16 @@ def test_stream() -> None:
|
||||
"""Test streaming tokens from Anthropic."""
|
||||
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
||||
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
chunks_with_input_token_counts = 0
|
||||
for token in llm.stream("I'm Pickle Rick"):
|
||||
assert isinstance(token.content, str)
|
||||
full = token if full is None else full + token
|
||||
assert isinstance(token, AIMessageChunk)
|
||||
if token.usage_metadata is not None and token.usage_metadata.get(
|
||||
"input_tokens"
|
||||
):
|
||||
chunks_with_input_token_counts += 1
|
||||
if chunks_with_input_token_counts != 1:
|
||||
raise AssertionError(
|
||||
"Expected exactly one chunk with input token counts. "
|
||||
"AIMessageChunk aggregation adds counts. Check that "
|
||||
"this is behaving properly."
|
||||
)
|
||||
# check token usage is populated
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
assert full.usage_metadata is not None
|
||||
assert full.usage_metadata["input_tokens"] > 0
|
||||
assert full.usage_metadata["output_tokens"] > 0
|
||||
assert full.usage_metadata["total_tokens"] > 0
|
||||
assert (
|
||||
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
||||
== full.usage_metadata["total_tokens"]
|
||||
)
|
||||
|
||||
|
||||
async def test_astream() -> None:
|
||||
"""Test streaming tokens from Anthropic."""
|
||||
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
|
||||
|
||||
full: Optional[BaseMessageChunk] = None
|
||||
chunks_with_input_token_counts = 0
|
||||
async for token in llm.astream("I'm Pickle Rick"):
|
||||
assert isinstance(token.content, str)
|
||||
full = token if full is None else full + token
|
||||
assert isinstance(token, AIMessageChunk)
|
||||
if token.usage_metadata is not None and token.usage_metadata.get(
|
||||
"input_tokens"
|
||||
):
|
||||
chunks_with_input_token_counts += 1
|
||||
if chunks_with_input_token_counts != 1:
|
||||
raise AssertionError(
|
||||
"Expected exactly one chunk with input token counts. "
|
||||
"AIMessageChunk aggregation adds counts. Check that "
|
||||
"this is behaving properly."
|
||||
)
|
||||
# check token usage is populated
|
||||
assert isinstance(full, AIMessageChunk)
|
||||
assert full.usage_metadata is not None
|
||||
assert full.usage_metadata["input_tokens"] > 0
|
||||
assert full.usage_metadata["output_tokens"] > 0
|
||||
assert full.usage_metadata["total_tokens"] > 0
|
||||
assert (
|
||||
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
||||
== full.usage_metadata["total_tokens"]
|
||||
)
|
||||
|
||||
# Check assumption that each chunk has identical input token counts.
|
||||
# This assumption is baked into _make_chat_generation_chunk.
|
||||
params: dict = {
|
||||
"model": MODEL_NAME,
|
||||
"max_tokens": 1024,
|
||||
"messages": [{"role": "user", "content": "I'm Pickle Rick"}],
|
||||
}
|
||||
all_input_tokens = set()
|
||||
async with llm._async_client.messages.stream(**params) as stream:
|
||||
async for _ in stream.text_stream:
|
||||
message_dump = stream.current_message_snapshot.model_dump()
|
||||
if input_tokens := message_dump.get("usage", {}).get("input_tokens"):
|
||||
assert input_tokens > 0
|
||||
all_input_tokens.add(input_tokens)
|
||||
assert len(all_input_tokens) == 1
|
||||
|
||||
|
||||
async def test_abatch() -> None:
|
||||
@ -333,17 +268,6 @@ def test_tool_use() -> None:
|
||||
assert isinstance(tool_call_chunk["args"], str)
|
||||
assert "location" in json.loads(tool_call_chunk["args"])
|
||||
|
||||
# Check usage metadata
|
||||
assert gathered.usage_metadata is not None
|
||||
assert gathered.usage_metadata["input_tokens"] > 0
|
||||
assert gathered.usage_metadata["output_tokens"] > 0
|
||||
assert gathered.usage_metadata["total_tokens"] > 0
|
||||
assert (
|
||||
gathered.usage_metadata["input_tokens"]
|
||||
+ gathered.usage_metadata["output_tokens"]
|
||||
== gathered.usage_metadata["total_tokens"]
|
||||
)
|
||||
|
||||
|
||||
def test_anthropic_with_empty_text_block() -> None:
|
||||
"""Anthropic SDK can return an empty text block."""
|
||||
|
Loading…
Reference in New Issue
Block a user