mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-24 16:37:46 +00:00
AstraDB VectorStore: implement pre_delete_collection (#13780)
- **Description:** some vector stores have a flag for try deleting the collection before creating it (such as ´vectorpg´). This is a useful flag when prototyping indexing pipelines and also for integration tests. Added the bool flag `pre_delete_collection ` to the constructor (default False) - **Tag maintainer:** @hemidactylus - **Twitter handle:** nicoloboschi --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
2780d2d4dd
commit
e204657b3c
@ -78,7 +78,7 @@ class AstraDB(VectorStore):
|
||||
vectorstore.add_texts(["Giraffes", "All good here"])
|
||||
results = vectorstore.similarity_search("Everything's ok", k=1)
|
||||
|
||||
Constructor args (only keyword-arguments accepted):
|
||||
Constructor Args (only keyword-arguments accepted):
|
||||
embedding (Embeddings): embedding function to use.
|
||||
collection_name (str): name of the Astra DB collection to create/use.
|
||||
token (Optional[str]): API token for Astra DB usage.
|
||||
@ -101,6 +101,9 @@ class AstraDB(VectorStore):
|
||||
threads in a batch to insert pre-existing entries.
|
||||
bulk_delete_concurrency (Optional[int]): Number of threads
|
||||
(for deleting multiple rows concurrently).
|
||||
pre_delete_collection (Optional[bool]): whether to delete the collection
|
||||
before creating it. If False and the collection already exists,
|
||||
the collection will be used as is.
|
||||
|
||||
A note on concurrency: as a rule of thumb, on a typical client machine
|
||||
it is suggested to keep the quantity
|
||||
@ -138,6 +141,7 @@ class AstraDB(VectorStore):
|
||||
bulk_insert_batch_concurrency: Optional[int] = None,
|
||||
bulk_insert_overwrite_concurrency: Optional[int] = None,
|
||||
bulk_delete_concurrency: Optional[int] = None,
|
||||
pre_delete_collection: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Create an AstraDB vector store object. See class docstring for help.
|
||||
@ -154,6 +158,7 @@ class AstraDB(VectorStore):
|
||||
"Could not import a recent astrapy python package. "
|
||||
"Please install it with `pip install --upgrade astrapy`."
|
||||
)
|
||||
|
||||
# Conflicting-arg checks:
|
||||
if astra_db_client is not None:
|
||||
if token is not None or api_endpoint is not None:
|
||||
@ -191,7 +196,10 @@ class AstraDB(VectorStore):
|
||||
api_endpoint=self.api_endpoint,
|
||||
namespace=self.namespace,
|
||||
)
|
||||
if not pre_delete_collection:
|
||||
self._provision_collection()
|
||||
else:
|
||||
self.clear()
|
||||
|
||||
self.collection = LibAstraDBCollection(
|
||||
collection_name=self.collection_name,
|
||||
|
@ -148,6 +148,41 @@ class TestAstraDB:
|
||||
)
|
||||
v_store_2.delete_collection()
|
||||
|
||||
def test_astradb_vectorstore_pre_delete_collection(self) -> None:
|
||||
"""Create and delete."""
|
||||
emb = SomeEmbeddings(dimension=2)
|
||||
# creation by passing the connection secrets
|
||||
|
||||
v_store = AstraDB(
|
||||
embedding=emb,
|
||||
collection_name="lc_test_pre_del",
|
||||
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
||||
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"],
|
||||
namespace=os.environ.get("ASTRA_DB_KEYSPACE"),
|
||||
)
|
||||
try:
|
||||
v_store.add_texts(
|
||||
texts=["aa"],
|
||||
metadatas=[
|
||||
{"k": "a", "ord": 0},
|
||||
],
|
||||
ids=["a"],
|
||||
)
|
||||
res1 = v_store.similarity_search("aa", k=5)
|
||||
assert len(res1) == 1
|
||||
v_store = AstraDB(
|
||||
embedding=emb,
|
||||
pre_delete_collection=True,
|
||||
collection_name="lc_test_pre_del",
|
||||
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
||||
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"],
|
||||
namespace=os.environ.get("ASTRA_DB_KEYSPACE"),
|
||||
)
|
||||
res1 = v_store.similarity_search("aa", k=5)
|
||||
assert len(res1) == 0
|
||||
finally:
|
||||
v_store.delete_collection()
|
||||
|
||||
def test_astradb_vectorstore_from_x(self) -> None:
|
||||
"""from_texts and from_documents methods."""
|
||||
emb = SomeEmbeddings(dimension=2)
|
||||
|
Loading…
Reference in New Issue
Block a user