mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-10 05:20:39 +00:00
community: Add docstring for KeybertLinkExtractor (#26210)
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
bab9de581c
commit
e235a572a0
@ -20,22 +20,114 @@ class KeybertLinkExtractor(LinkExtractor[KeybertInput]):
|
|||||||
embedding_model: str = "all-MiniLM-L6-v2",
|
embedding_model: str = "all-MiniLM-L6-v2",
|
||||||
extract_keywords_kwargs: Optional[Dict[str, Any]] = None,
|
extract_keywords_kwargs: Optional[Dict[str, Any]] = None,
|
||||||
):
|
):
|
||||||
"""Extract keywords using KeyBERT <https://maartengr.github.io/KeyBERT/>.
|
"""Extract keywords using `KeyBERT <https://maartengr.github.io/KeyBERT/>`_.
|
||||||
|
|
||||||
Example:
|
KeyBERT is a minimal and easy-to-use keyword extraction technique that
|
||||||
|
leverages BERT embeddings to create keywords and keyphrases that are most
|
||||||
|
similar to a document.
|
||||||
|
|
||||||
.. code-block:: python
|
The KeybertLinkExtractor uses KeyBERT to create links between documents that
|
||||||
|
have keywords in common.
|
||||||
|
|
||||||
extractor = KeybertLinkExtractor()
|
Example::
|
||||||
|
|
||||||
results = extractor.extract_one(PAGE_1)
|
extractor = KeybertLinkExtractor()
|
||||||
|
results = extractor.extract_one("lorem ipsum...")
|
||||||
|
|
||||||
|
.. seealso::
|
||||||
|
|
||||||
|
- :mod:`How to use a graph vector store <langchain_community.graph_vectorstores>`
|
||||||
|
- :class:`How to create links between documents <langchain_core.graph_vectorstores.links.Link>`
|
||||||
|
|
||||||
|
How to link Documents on common keywords using Keybert
|
||||||
|
======================================================
|
||||||
|
|
||||||
|
Preliminaries
|
||||||
|
-------------
|
||||||
|
|
||||||
|
Install the keybert package:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
pip install -q langchain_community keybert
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
|
||||||
|
We load the ``state_of_the_union.txt`` file, chunk it, then for each chunk we
|
||||||
|
extract keyword links and add them to the chunk.
|
||||||
|
|
||||||
|
Using extract_one()
|
||||||
|
^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
We can use :meth:`extract_one` on a document to get the links and add the links
|
||||||
|
to the document metadata with
|
||||||
|
:meth:`~langchain_core.graph_vectorstores.links.add_links`::
|
||||||
|
|
||||||
|
from langchain_community.document_loaders import TextLoader
|
||||||
|
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
|
||||||
|
from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor
|
||||||
|
from langchain_core.graph_vectorstores.links import add_links
|
||||||
|
from langchain_text_splitters import CharacterTextSplitter
|
||||||
|
|
||||||
|
loader = TextLoader("state_of_the_union.txt")
|
||||||
|
|
||||||
|
raw_documents = loader.load()
|
||||||
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||||
|
|
||||||
|
documents = text_splitter.split_documents(raw_documents)
|
||||||
|
keyword_extractor = KeybertLinkExtractor()
|
||||||
|
|
||||||
|
for document in documents:
|
||||||
|
links = keyword_extractor.extract_one(document)
|
||||||
|
add_links(document, links)
|
||||||
|
|
||||||
|
print(documents[0].metadata)
|
||||||
|
|
||||||
|
.. code-block:: output
|
||||||
|
|
||||||
|
{'source': 'state_of_the_union.txt', 'links': [Link(kind='kw', direction='bidir', tag='ukraine'), Link(kind='kw', direction='bidir', tag='ukrainian'), Link(kind='kw', direction='bidir', tag='putin'), Link(kind='kw', direction='bidir', tag='vladimir'), Link(kind='kw', direction='bidir', tag='russia')]}
|
||||||
|
|
||||||
|
Using LinkExtractorTransformer
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`,
|
||||||
|
we can simplify the link extraction::
|
||||||
|
|
||||||
|
from langchain_community.document_loaders import TextLoader
|
||||||
|
from langchain_community.graph_vectorstores.extractors import (
|
||||||
|
KeybertLinkExtractor,
|
||||||
|
LinkExtractorTransformer,
|
||||||
|
)
|
||||||
|
from langchain_text_splitters import CharacterTextSplitter
|
||||||
|
|
||||||
|
loader = TextLoader("state_of_the_union.txt")
|
||||||
|
raw_documents = loader.load()
|
||||||
|
|
||||||
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
||||||
|
documents = text_splitter.split_documents(raw_documents)
|
||||||
|
|
||||||
|
transformer = LinkExtractorTransformer([KeybertLinkExtractor()])
|
||||||
|
documents = transformer.transform_documents(documents)
|
||||||
|
|
||||||
|
print(documents[0].metadata)
|
||||||
|
|
||||||
|
.. code-block:: output
|
||||||
|
|
||||||
|
{'source': 'state_of_the_union.txt', 'links': [Link(kind='kw', direction='bidir', tag='ukraine'), Link(kind='kw', direction='bidir', tag='ukrainian'), Link(kind='kw', direction='bidir', tag='putin'), Link(kind='kw', direction='bidir', tag='vladimir'), Link(kind='kw', direction='bidir', tag='russia')]}
|
||||||
|
|
||||||
|
The documents with keyword links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`::
|
||||||
|
|
||||||
|
from langchain_community.graph_vectorstores import CassandraGraphVectorStore
|
||||||
|
|
||||||
|
store = CassandraGraphVectorStore.from_documents(documents=documents, embedding=...)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
kind: Kind of links to produce with this extractor.
|
kind: Kind of links to produce with this extractor.
|
||||||
embedding_model: Name of the embedding model to use with KeyBERT.
|
embedding_model: Name of the embedding model to use with KeyBERT.
|
||||||
extract_keywords_kwargs: Keyword arguments to pass to KeyBERT's
|
extract_keywords_kwargs: Keyword arguments to pass to KeyBERT's
|
||||||
`extract_keywords` method.
|
``extract_keywords`` method.
|
||||||
"""
|
""" # noqa: E501
|
||||||
try:
|
try:
|
||||||
import keybert
|
import keybert
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user